相似度loss汇总,pytorch code
用于约束图像生成,作为loss。
可梯度优化
- pytorch structural similarity (SSIM) loss https://github.com/Po-Hsun-Su/pytorch-ssim
- https://github.com/harveyslash/Facial-Similarity-with-Siamese-Networks-in-Pytorch/blob/master/Siamese-networks-medium.ipynb
class ContrastiveLoss(torch.nn.Module):"""Contrastive loss function.Based on: http://yann.lecun.com/exdb/publis/pdf/hadsell-chopra-lecun-06.pdf"""def __init__(self, margin=2.0):super(ContrastiveLoss, self).__init__()self.margin = margindef forward(self, output1, output2, label):euclidean_distance = F.pairwise_distance(output1, output2, keepdim = True)loss_contrastive = torch.mean((1-label) * torch.pow(euclidean_distance, 2) +(label) * torch.pow(torch.clamp(self.margin - euclidean_distance, min=0.0), 2))return loss_contrastive
- 多个集合,参看写法 Multi-Similarity Loss for Deep Metric Learning (MS-Loss)
- 参考 https://blog.csdn.net/m0_46204224/article/details/117997854
@LOSS.register('ms_loss')
class MultiSimilarityLoss(nn.Module):def __init__(self, cfg):super(MultiSimilarityLoss, self).__init__()self.thresh = 0.5self.margin = 0.1self.scale_pos = cfg.LOSSES.MULTI_SIMILARITY_LOSS.SCALE_POSself.scale_neg = cfg.LOSSES.MULTI_SIMILARITY_LOSS.SCALE_NEGdef forward(self, feats, labels):assert feats.size(0) == labels.size(0), \f"feats.size(0): {feats.size(0)} is not equal to labels.size(0): {labels.size(0)}"batch_size = feats.size(0)sim_mat = torch.matmul(feats, torch.t(feats))epsilon = 1e-5loss = list()for i in range(batch_size):pos_pair_ = sim_mat[i][labels == labels[i]]pos_pair_ = pos_pair_[pos_pair_ < 1 - epsilon]neg_pair_ = sim_mat[i][labels != labels[i]]neg_pair = neg_pair_[neg_pair_ + self.margin > min(pos_pair_)]pos_pair = pos_pair_[pos_pair_ - self.margin < max(neg_pair_)]if len(neg_pair) < 1 or len(pos_pair) < 1:continue# weighting steppos_loss = 1.0 / self.scale_pos * torch.log(1 + torch.sum(torch.exp(-self.scale_pos * (pos_pair - self.thresh))))neg_loss = 1.0 / self.scale_neg * torch.log(1 + torch.sum(torch.exp(self.scale_neg * (neg_pair - self.thresh))))loss.append(pos_loss + neg_loss)if len(loss) == 0:return torch.zeros([], requires_grad=True)loss = sum(loss) / batch_sizereturn loss
- Recall@k Surrogate Loss with Large Batches and Similarity Mixup https://github.com/yash0307/RecallatK_surrogate
class RecallatK(torch.nn.Module):def __init__(self, anneal, batch_size, num_id, feat_dims, k_vals, k_temperatures, mixup):super(RecallatK, self).__init__()assert(batch_size%num_id==0)self.anneal = annealself.batch_size = batch_sizeself.num_id = num_idself.feat_dims = feat_dimsself.k_vals = [min(batch_size, k) for k in k_vals]self.k_temperatures = k_temperaturesself.mixup = mixupself.samples_per_class = int(batch_size/num_id)def forward(self, preds, q_id):batch_size = preds.shape[0]num_id = self.num_idanneal = self.annealfeat_dims = self.feat_dimsk_vals = self.k_valsk_temperatures = self.k_temperaturessamples_per_class = int(batch_size/num_id)norm_vals = torch.Tensor([min(k, (samples_per_class-1)) for k in k_vals]).cuda()group_num = int(q_id/samples_per_class)q_id_ = group_num*samples_per_classsim_all = (preds[q_id]*preds).sum(1)sim_all_g = sim_all.view(num_id, int(batch_size/num_id))sim_diff_all = sim_all.unsqueeze(-1) - sim_all_g[group_num, :].unsqueeze(0).repeat(batch_size,1)sim_sg = sigmoid(sim_diff_all, temp=anneal)for i in range(samples_per_class): sim_sg[group_num*samples_per_class+i,i] = 0.sim_all_rk = (1.0 + torch.sum(sim_sg, dim=0)).unsqueeze(dim=0)sim_all_rk[:, q_id%samples_per_class] = 0.sim_all_rk = sim_all_rk.unsqueeze(dim=-1).repeat(1,1,len(k_vals))k_vals = torch.Tensor(k_vals).cuda()k_vals = k_vals.unsqueeze(dim=0).unsqueeze(dim=0).repeat(1, samples_per_class, 1)sim_all_rk = k_vals - sim_all_rkfor given_k in range(0, len(self.k_vals)):sim_all_rk[:,:,given_k] = sigmoid(sim_all_rk[:,:,given_k], temp=float(k_temperatures[given_k]))sim_all_rk[:,q_id%samples_per_class,:] = 0.k_vals_loss = torch.Tensor(self.k_vals).cuda()k_vals_loss = k_vals_loss.unsqueeze(dim=0)recall = torch.sum(sim_all_rk, dim=1)recall = torch.minimum(recall, k_vals_loss)recall = torch.sum(recall, dim=0)recall = torch.div(recall, norm_vals)recall = torch.sum(recall)/len(self.k_vals)return (1.-recall)/batch_size
-
Circle Loss https://github.com/TinyZeaMays/CircleLoss/blob/master/circle_loss.py
-
Torch的官方 https://pytorch.org/docs/1.12/nn.functional.html#loss-functions
-
KL散度
-
Hard Triplet loss
from __future__ import absolute_import
import sysimport torch
from torch import nn
DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")class TripletLoss(nn.Module):"""Triplet loss with hard positive/negative mining.Reference:Hermans et al. In Defense of the Triplet Loss for Person Re-Identification. arXiv:1703.07737.Code imported from https://github.com/Cysu/open-reid/blob/master/reid/loss/triplet.py.Args:margin (float): margin for triplet."""def __init__(self, margin=0.3):#三元组的阈值marginsuper(TripletLoss, self).__init__()self.margin = marginself.ranking_loss = nn.MarginRankingLoss(margin=margin)#三元组损失函数#ap an margin y:倍率 Relu(ap - anxy + margin)这个relu就起到和0比较的作用def forward(self, inputs, targets):"""Args:inputs: visualization_feature_map matrix with shape (batch_size, feat_dim)#32x2048targets: ground truth labels with shape (num_classes)#tensor([32])[1,1,1,1,2,3,2,,,,2]32个数,一个数代表ID的真实标签"""n = inputs.size(0)#取出输入的batch# Compute pairwise distance, replace by the official when merged#计算距离矩阵,其实就是计算两个2048维之间的距离平方(a-b)**2=a^2+b^2-2ab#[1,2,3]*[1,2,3]=[1,4,9].sum()=14 点乘dist = torch.pow(inputs, 2).sum(dim=1, keepdim=True).expand(n, n)dist = dist + dist.t()dist.addmm_(1, -2, inputs, inputs.t())#生成距离矩阵32x32,.t()表示转置dist = dist.clamp(min=1e-12).sqrt() # for numerical stability#clamp(min=1e-12)加这个防止矩阵中有0,对梯度下降不好# For each anchor, find the hardest positive and negativemask = targets.expand(n, n).eq(targets.expand(n, n).t())#利用target标签的expand,并eq,获得mask的范围,由0,1组成,,红色1表示是同一个人,绿色0表示不是同一个人dist_ap, dist_an = [], []#用来存放ap,anfor i in range(n):#i表示行# dist[i][mask[i]],,i=0时,取mask的第一行,取距离矩阵的第一行,然后得到tensor([1.0000e-06, 1.0000e-06, 1.0000e-06, 1.0000e-06])dist_ap.append(dist[i][mask[i]].max().unsqueeze(0))#取某一行中,红色区域的最大值,mask前4个是1,与dist相乘dist_an.append(dist[i][mask[i] == 0].min().unsqueeze(0))#取某一行,绿色区域的最小值,加一个.unsqueeze(0)将其变成带有维度的tensordist_ap = torch.cat(dist_ap)dist_an = torch.cat(dist_an)# Compute ranking hinge lossy = torch.ones_like(dist_an)#y是个权重,长度像dist-anloss = self.ranking_loss(dist_an, dist_ap, y) #ID损失:交叉商输入的是32xf f.shape=分类数,然后loss用于计算损失#度量三元组:输入的是dist_an(从距离矩阵中,挑出一行(即一个ID)的最大距离),dist_ap#ranking_loss输入 an ap margin y:倍率 loss: Relu(ap - anxy + margin)这个relu就起到和0比较的作用# from IPython import embed# embed()return lossclass MultiSimilarityLoss(nn.Module):def __init__(self, margin=0.7):super(MultiSimilarityLoss, self).__init__()self.thresh = 0.5self.margin = marginself.scale_pos = 2.0self.scale_neg = 40.0def forward(self, feats, labels):assert feats.size(0) == labels.size(0), \f"feats.size(0): {feats.size(0)} is not equal to labels.size(0): {labels.size(0)}"batch_size = feats.size(0)feats = nn.functional.normalize(feats, p=2, dim=1)# Shape: batchsize * batch sizesim_mat = torch.matmul(feats, torch.t(feats))epsilon = 1e-5loss = list()mask = labels.expand(batch_size, batch_size).eq(labels.expand(batch_size, batch_size).t())for i in range(batch_size):pos_pair_ = sim_mat[i][mask[i]]pos_pair_ = pos_pair_[pos_pair_ < 1 - epsilon]neg_pair_ = sim_mat[i][mask[i] == 0]neg_pair = neg_pair_[neg_pair_ + self.margin > min(pos_pair_)]pos_pair = pos_pair_[pos_pair_ - self.margin < max(neg_pair_)]if len(neg_pair) < 1 or len(pos_pair) < 1:continue# weighting steppos_loss = 1.0 / self.scale_pos * torch.log(1 + torch.sum(torch.exp(-self.scale_pos * (pos_pair - self.thresh))))neg_loss = 1.0 / self.scale_neg * torch.log(1 + torch.sum(torch.exp(self.scale_neg * (neg_pair - self.thresh))))loss.append(pos_loss + neg_loss)# pos_loss =if len(loss) == 0:return torch.zeros([], requires_grad=True, device=feats.device)loss = sum(loss) / batch_sizereturn lossif __name__ == '__main__':#测试TripletLoss(nn.Module)use_gpu = Falsemodel = TripletLoss()features = torch.rand(32, 2048)label= torch.Tensor([1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8,8]).long()loss = model(features, label)print(loss)
不可梯度优化
相关文章:
相似度loss汇总,pytorch code
用于约束图像生成,作为loss。 可梯度优化 pytorch structural similarity (SSIM) loss https://github.com/Po-Hsun-Su/pytorch-ssimhttps://github.com/harveyslash/Facial-Similarity-with-Siamese-Networks-in-Pytorch/blob/master/Siamese-networks-medium.ip…...
python中的yolov5结合PyQt5,使用QT designer设计界面没正确启动的解决方法
python中的yolov5结合PyQt5,使用QT designer设计界面没正确启动的解决方法 一、窗体设计test: 默认你已经设计好了窗体后: 这时你需要的是保存生成的untitle.ui到某个文件夹下,然后在命令行中奖.ui转换为.py(,通过…...
Milk-V Duo移植rt-thread smart
前言 (1)PLCT实验室实习生长期招聘:招聘信息链接 (2)首先,我们拿到Milk-V Duo板子之后,我个人建议先移植大核Linux。因为那个资料相对多一点,也简单很多,现象也容易观察到…...
会声会影2024有哪些新功能?好不好用
比如会声会影视频编辑软件,既加入光影、动态特效的滤镜效果,也提供了与色彩调整相关的LUT配置文件滤镜,可选择性大,运用起来更显灵活。会声会影在用户的陪伴下走过20余载,经过上百个版本的优化迭代,已将操作…...
vue3 + axios 中断取消接口请求
前言 最近开发过程中,总是遇到想把正在请求的axios接口取消,这种情况有很多应用场景,举几个例子: 弹窗中接口请求返回图片,用于前端展示,接口还没返回数据,此时关闭弹窗,需要中断接…...
Linux高性能服务器编程——ch6笔记
第6章 高级I/O函数 6.1 pipe函数 用于创建一个管道,以实现进程间通信。 int pipe(int fd[2]); 读端文件描述符fd[0]和写端文件描述符fd[1]构成管道的两端,默认是阻塞的,fd[0]读出数据,fd[1]写入数据。管道内部传输的数据是字节…...
【C语言进阶】文件操作
文件操作 1. 为什么使用文件2. 什么是文件2.1程序文件2.2 数据文件2.3 文件名 3. 文件的打开和关闭3.1 文件指针3.2 文件的打开和关闭 4. 文件的顺序读写4.1 对比一组函数 5. 文件的随机读写5.1 fseek5.2 ftell5.3 rewind 6. 文本文件和二进制文件7. 文件读取结束的判定7.1 被错…...
Redis学习(第八章缓存策略)
目录 RdisExample 课程介绍 1.Redis介绍 2.Redis 安装 3. Redis的数据结构 4. Redis缓存特性 5. Redis使用场景 6. Redis客户端-Jedis 7. Jedis Pipeline 8. Redis缓存策略 学习资料 QA 相关问题 http, socket ,tcp的区别 RdisExample 项目代码地址:htt…...
springboot+vue开发的视频弹幕网站动漫网站
springbootvue开发的视频弹幕网站动漫网站 演示视频 https://www.bilibili.com/video/BV1MC4y137Qk/?share_sourcecopy_web&vd_source11344bb73ef9b33550b8202d07ae139b 功能: 前台: 首页(猜你喜欢视频推荐)、轮播图、分类…...
【CSS】常见 CSS 布局
1. 响应式布局 <!DOCTYPE html> <html><head><title>简单的响应式布局</title><style>/* 全局样式 */body {font-family: Arial, sans-serif;margin: 0;padding: 0;}/* 头部样式 */header {background-color: #333;color: #fff;padding: …...
数据结构---HashMap和HashSet
HashMap和HashSet都是存储在哈希桶之中,我们可以先了解一些哈希桶是什么。 像这样,一个数组数组的每个节点带着一个链表,数据就存放在链表结点当中。哈希桶插入/删除/查找节点的时间复杂度是O(1) map代表存入一个key值,一个val值…...
SLAM中相机姿态估计算法推导基础数学总结
相机模型 基本模型 内参 外参 对极几何 对极约束 外积符号 基础矩阵F和本质矩阵E 相机姿态估计问题分为如下两步: 本质矩阵 E t ∧ R Et^{\wedge}R Et∧R因为 t ∧ t^{\wedge} t∧其实就是个3x3的反对称矩阵,所以 E E E也是一个3x3的矩阵 用八点法估计E…...
【RS】遥感影像/图片64位、16位(64bit、16bit)的意义和区别
在数字图像处理中,我们常常会听到不同的位数术语,比如64位、16位和8位(64bit、16bit、8bit)。这些位数指的是图像的深度,也就是图像中每个像素可以显示的颜色数。位数越高,图像可以显示的颜色数就越多&…...
【单元测试】--基础知识
一、什么是单元测试 单元测试是软件开发中的一种测试方法,用于验证代码中的单个组件(通常是函数、方法或类)是否按预期工作。它旨在隔离和测试代码的最小单元,以确保其功能正确,提高代码质量和可维护性。单元测试通常…...
golang 反射机制
在 go 语言中,实现反射能力的是 reflect包,能够让程序操作不同类型的对象。其中,在反射包中有两个非常重要的 类型和 函数,两个函数分别是: reflect.TypeOfreflect.ValueOf 两个类型是 reflect.Type 和 reflect.Value…...
【Javascript】创建对象的几种方式
通过字面量创建对象 通过构造函数创建对象 Object()-------------构造函数 通过构造函数来实例化对象 给person注入属性 Factory工厂 this指向的是对象的本身使⽤new 实例化⼀个对象,就像⼯⼚⼀样...
深度学习_3_实战_房价预测
梯度 实战 代码: # %matplotlib inline import random import torch import matplotlib.pyplot as plt # from d21 import torch as d21def synthetic_data(w, b, num_examples):"""生成 Y XW b 噪声。"""X torch.normal(0,…...
HCIA -- 动态路由协议之RIP
一、静态协议的优缺点: 缺点: 1、中大型网络配置量过大 2、不能基于拓扑的变化而实时的变化 优点: 1、不会额外暂用物理资源 2、安全问题 3、计算路径问题 简单、小型网络建议使用静态路由;中大型较复杂网络,建议使用…...
JS常用时间操作moment.js参考文档
Moment.js是一个轻量级的JavaScript时间库,它方便了日常开发中对时间的操作,提高了开发效率。日常开发中,通常会对时间进行下面这几个操作:比如获取时间,设置时间,格式化时间,比较时间等等。下面…...
基于 FFmpeg 的跨平台视频播放器简明教程(九):Seek 策略
系列文章目录 基于 FFmpeg 的跨平台视频播放器简明教程(一):FFMPEG Conan 环境集成基于 FFmpeg 的跨平台视频播放器简明教程(二):基础知识和解封装(demux)基于 FFmpeg 的跨平台视频…...
TDengine 快速体验(Docker 镜像方式)
简介 TDengine 可以通过安装包、Docker 镜像 及云服务快速体验 TDengine 的功能,本节首先介绍如何通过 Docker 快速体验 TDengine,然后介绍如何在 Docker 环境下体验 TDengine 的写入和查询功能。如果你不熟悉 Docker,请使用 安装包的方式快…...
CVPR 2025 MIMO: 支持视觉指代和像素grounding 的医学视觉语言模型
CVPR 2025 | MIMO:支持视觉指代和像素对齐的医学视觉语言模型 论文信息 标题:MIMO: A medical vision language model with visual referring multimodal input and pixel grounding multimodal output作者:Yanyuan Chen, Dexuan Xu, Yu Hu…...
Zustand 状态管理库:极简而强大的解决方案
Zustand 是一个轻量级、快速和可扩展的状态管理库,特别适合 React 应用。它以简洁的 API 和高效的性能解决了 Redux 等状态管理方案中的繁琐问题。 核心优势对比 基本使用指南 1. 创建 Store // store.js import create from zustandconst useStore create((set)…...
解决Ubuntu22.04 VMware失败的问题 ubuntu入门之二十八
现象1 打开VMware失败 Ubuntu升级之后打开VMware上报需要安装vmmon和vmnet,点击确认后如下提示 最终上报fail 解决方法 内核升级导致,需要在新内核下重新下载编译安装 查看版本 $ vmware -v VMware Workstation 17.5.1 build-23298084$ lsb_release…...
HTML 列表、表格、表单
1 列表标签 作用:布局内容排列整齐的区域 列表分类:无序列表、有序列表、定义列表。 例如: 1.1 无序列表 标签:ul 嵌套 li,ul是无序列表,li是列表条目。 注意事项: ul 标签里面只能包裹 li…...
测试markdown--肇兴
day1: 1、去程:7:04 --11:32高铁 高铁右转上售票大厅2楼,穿过候车厅下一楼,上大巴车 ¥10/人 **2、到达:**12点多到达寨子,买门票,美团/抖音:¥78人 3、中饭&a…...
spring:实例工厂方法获取bean
spring处理使用静态工厂方法获取bean实例,也可以通过实例工厂方法获取bean实例。 实例工厂方法步骤如下: 定义实例工厂类(Java代码),定义实例工厂(xml),定义调用实例工厂ÿ…...
EtherNet/IP转DeviceNet协议网关详解
一,设备主要功能 疆鸿智能JH-DVN-EIP本产品是自主研发的一款EtherNet/IP从站功能的通讯网关。该产品主要功能是连接DeviceNet总线和EtherNet/IP网络,本网关连接到EtherNet/IP总线中做为从站使用,连接到DeviceNet总线中做为从站使用。 在自动…...
Springboot社区养老保险系统小程序
一、前言 随着我国经济迅速发展,人们对手机的需求越来越大,各种手机软件也都在被广泛应用,但是对于手机进行数据信息管理,对于手机的各种软件也是备受用户的喜爱,社区养老保险系统小程序被用户普遍使用,为方…...
现有的 Redis 分布式锁库(如 Redisson)提供了哪些便利?
现有的 Redis 分布式锁库(如 Redisson)相比于开发者自己基于 Redis 命令(如 SETNX, EXPIRE, DEL)手动实现分布式锁,提供了巨大的便利性和健壮性。主要体现在以下几个方面: 原子性保证 (Atomicity)ÿ…...
