当前位置: 首页 > news >正文

领先一步,效率翻倍:PieCloudDB Database 预聚集特性让查询速度飞起来!

在大数据时代,如何有效地管理和处理海量数据成为了企业面临的核心挑战。为此,拓数派推出了首款数据计算引擎 PieCloudDB Database,作为一款全新的云原生虚拟数仓,旨在提供更高效、更灵活的数据处理解决方案。

PieCloudDB 的设计理念源于对用户使用体验和查询效率的深度理解。在实现存算分离的同时,PieCloudDB 专门设计和打造了全新的存储引擎「简墨」等模块。针对云场景和分析型场景,PieCloudDB 还设计了高效的预聚集(Pre-Aggregate)特性。本文将详细介绍 PieCloudDB 如何运用预聚集技术优化数据处理流程,改善用户体验。

作为云原生虚拟数仓,PieCloudDB 充分借助云计算所提供的基础设施服务,包括大规模分布式集群、虚拟机、容器等。这些特性使得 PieCloudDB 能更好地适应动态的和不断变化的工作负载需求。同时,PieCloudDB 也积极拓展其自身的特性,实现高可用、易扩展和弹性伸缩,以满足企业不断增长的业务需求。

PieCloudDB 实现了一个重要创新功能:预聚集(Pre-Aggregate)。 该功能通过 PieCloudDB 的全新的存储引擎「简墨」(JANM),在数据插入时即时计算数据列的 Aggregate 信息,并将其预先保存以供后续使用。这种方法摒弃了在查询时进行复杂计算的传统方式,从而大大提升了查询速度。此外,由于聚合数据保存在文件中,可以实现快速访问并直接应用于查询。

PieCloudDB 会根据用户的查询自动生成带有 Pre-Aggregate 的计划,使得查询过程尽可能地快速且准确。 当需要聚合数据时,系统会检查预存储的聚合值,并直接读取符合条件的 Aggregate 数据。这样避免了查询过程中扫描整个数据集的需求,可以大幅提升查询速度。

对于部分满足条件的块,PieCloudDB 将会回归原来的处理方式计算 Aggregate 值。 这样既能利用已经预聚合的数据,又只需计算缺少的部分,从而降低计算成本并提高运算效率。

1 预聚集的原理

为了能够增加 Aggregate 的查询性能,PieCloudDB 采用了以「空间」换取「时间」的策略,在写入数据的时候,在存储层中将相关的 Aggregate 进行预先计算并保存,从而在查询的时候可以快速找到需要的 Aggregate 数据。

上面解决了 Aggregate 数据来源问题,下面将介绍如何拿到预先计算的 Aggregate 数据。为了能够实现正确获取下推的 Aggregate 数据,PieCloudDB 的优化器与执行器被进一步改造,增加了两个新的 Pre-Aggregate 计算节点。改造前后的计划树(plan tree) 的对比如下图所示:

改造前后 plan tree 对比图

存储引擎「简墨」会在数据插入时,即时更新 Aggregate 信息。在上图中的 Pre-Aggregate 计算节点会从 AM(access method)中取出预先计算的 Aggregate 数据,如果没有找到合适的 Aggregate 数据,Pre-Aggregate 计算节点也会从 AM 中找出满足条件的 tuple 计算出对应的 Aggregate 数据,返回给上层计算节点使用。这样就解决了怎么正确找到下推的 Aggregate 数据的问题。

Pre-Aggregate 是 OLAP 优化技术中 Zone Maps 的具体实现。即预先计算一批元组属性值的聚合并预先保存,数据库检查预计算的聚集信息决定是否要访问该 block。即上面所述的如果找到可用的 Aggregate 数据则直接返回,否则访问该 block 检索具体元组。

对于带条件的 Pre-Aggregate 来说,其效果取决于预先计算所涉及的数据范围。PieCloudDB 将预聚集范围缩小至块文件,针对每个块文件分别进行预计算存储,从而保证带条件的预聚集查询效果。

2 预聚集的使用演示

下面给出了如何开启 Preagg Block Scan 以及支持 Block Skipping 的 Preagg Bitmap Block Scan 的使用方式。最后给出了对应的性能对比图。

2.1 Preagg Block Scan 使用方式

-- 创建 t 表
create table t(a int, b int, c int);-- 写入三行数据
insert into t values(1,2,3);
insert into t values(3,3,5);
insert into t values(4,4,6);-- 开启 preagg,默认是开启的
set pdb_enable_preagg = on;-- 执行如下的 query
explain (costs off) select sum(b), avg(c), count(*) from t;QUERY PLAN
------------------------------------------------Finalize Aggregate->  Gather Motion 3:1  (slice1; segments: 3)->  Pre-Aggregate Block Scan on tOptimizer: Postgres query optimizer
(4 rows)-- 开启后的执行结果
select sum(b), avg(c), count(*) from t;sum |        avg         | count
-----+--------------------+-------9 | 4.6666666666666667 |     3
(1 row)-- 关闭 preagg 
set pdb_enable_preagg = off;-- 执行同一条 query
explain (costs off) select sum(b), avg(c), count(*) from t;QUERY PLAN
------------------------------------------------Aggregate->  Gather Motion 3:1  (slice1; segments: 3)->  Seq Scan on tOptimizer: Postgres query optimizer
(4 rows)-- 关闭后的执行结果
select sum(b), avg(c), count(*) from t;sum |        avg         | count
-----+--------------------+-------9 | 4.6666666666666667 |     3
(1 row)

2.2 Preagg Bitmap Block Scan 使用方式

create table t(a int, b int);
insert into t values(generate_series(1, 20), generate_series(100, 120));
insert into t values(generate_series(21, 60), generate_series(121, 160));-- 开启 preagg,默认是开启的
set pdb_enable_preagg = on;
-- 下面是开启 Pre-Aggregate Bitmap Block Scan 的几个 guc
set enable_seqscan = off;
set enable_bitmapscan = on;
set enable_indexscan = on;-- 执行如下的 query
explain (costs off) select max(a), sum(a) from t where a > 10 and a < 50;QUERY PLAN
---------------------------------------------------------------Finalize Aggregate->  Gather Motion 3:1  (slice1; segments: 3)->  Partial Aggregate->  Pre-Aggregate Bitmap Block Scan on tRecheck Cond: ((a > 10) AND (a < 50))->  Bitmap Index Scan on tIndex Cond: ((a > 10) AND (a < 50))Optimizer: Postgres query optimizer
(8 rows)-- 开启后的执行结果
select max(a), sum(a) from t where a > 10 and a < 50;max | sum
-----+------49 | 1170
(1 row)-- 关闭 preagg 
set pdb_enable_preagg = off;-- 执行同一条 query
explain (costs off) select max(a), sum(a) from t where a > 10 and a < 50;QUERY PLAN
---------------------------------------------------------------Finalize Aggregate->  Gather Motion 3:1  (slice1; segments: 3)->  Partial Aggregate->  Bitmap Heap Scan on tRecheck Cond: ((a > 10) AND (a < 50))->  Bitmap Index Scan on tIndex Cond: ((a > 10) AND (a < 50))Optimizer: Postgres query optimizer
(8 rows)-- 关闭后的执行结果
select max(a), sum(a) from t where a > 10 and a < 50;max | sum
-----+------49 | 1170
(1 row)

2.3 性能对比

测试表:

create table preaggdata (a int, b int);

测试语句:

explain analyze select sum(a), avg(a), count(*), max(b) from preaggdata;

耗时对比图如下所示:

耗时对比图

从上面的测试数据和对比图可以看出,未开启 Pre-Agg 时,随着数据量的增大,耗时不断增大,且增加的速度也会越来越快;而开启 Pre-Agg 时,耗时是平稳的增长的,增长的速度也不快。当数据量达到 10000K 时,实现了近 28 倍的速度提升。

3 预聚集未来演变之路

目前,Pre-Aggregate 采用「空间」换「时间」的策略来提升性能效率。为了扩大 Pre-Aggregate 的应用范围,优化用户体验,我们将不断推动技术研发,扩大应用场景,并提供更加丰富、多元的功能。

无论是通过优化数据处理方式,拓展支持的函数类型,还是引进新的查询处理机制,我们都在锲而不舍地努力实现这一目标。相信很快,Pre-Aggregate 将能够为复杂的查询场景提供更高效、更精准的解决方案,从而逐步深化其在数据分析和处理领域的应用影响力。

相关文章:

领先一步,效率翻倍:PieCloudDB Database 预聚集特性让查询速度飞起来!

在大数据时代&#xff0c;如何有效地管理和处理海量数据成为了企业面临的核心挑战。为此&#xff0c;拓数派推出了首款数据计算引擎 PieCloudDB Database&#xff0c;作为一款全新的云原生虚拟数仓&#xff0c;旨在提供更高效、更灵活的数据处理解决方案。 PieCloudDB 的设计理…...

系统性认知网络安全

前言&#xff1a;本文旨在介绍网络安全相关基础知识体系和框架 目录 一.信息安全概述 信息安全研究内容及关系 信息安全的基本要求 保密性Confidentiality&#xff1a; 完整性Integrity&#xff1a; 可用性Availability&#xff1a; 二.信息安全的发展 20世纪60年代&…...

MySQL查看数据库、表容量大小

1. 查看所有数据库容量大小 selecttable_schema as 数据库,sum(table_rows) as 记录数,sum(truncate(data_length/1024/1024, 2)) as 数据容量(MB),sum(truncate(index_length/1024/1024, 2)) as 索引容量(MB)from information_schema.tablesgroup by table_schemaorder by su…...

什么是全链路压测?

随着互联网技术的发展和普及&#xff0c;越来越多的互联网公司开始重视性能压测&#xff0c;并将其纳入软件开发和测试的流程中。 阿里巴巴在2014 年双11 大促活动保障背景下提出了全链路压测技术&#xff0c;能更好的保障系统可用性和稳定性。 什么是全链路压测&#xff1f;…...

EGL函数翻译--eglChooseConfig

EGL函数翻译–eglChooseConfig 函数名 EGLBoolean eglChooseConfig( EGLDisplay display,EGLint const* attrib_list,EGLConfig* configs,EGLint config_size,EGLint* num_config);参数描述 参数display: EGLDisplay的显示连接。 参数attrib_list: 指定"frame Buffer(帧…...

详细介绍如何使用Ipopt非线性求解器求解带约束的最优化问题

本文中将详细介绍如何使用Ipopt非线性求解器求解带约束的最优化问题&#xff0c;结合给出的带约束的最优化问题示例&#xff0c;给出相应的完整的C程序&#xff0c;并给出详细的解释和注释&#xff0c;以及编译规则等 一、Ipopt库的安装和测试 本部分内容在之前的文章《Ubuntu2…...

跳跃游戏Ⅱ-----题解报告

题目&#xff1a;力扣&#xff08;LeetCode&#xff09;官网 - 全球极客挚爱的技术成长平台 与Ⅰ不同的是&#xff0c;这次要求找出最小的跳跃次数。思路也很简单&#xff0c;在每一次跳跃之后都更新最远的跳跃距离。 举个列子&#xff1a; 输入&#xff1a;2,3,1,1,4 第一次…...

JVM 基础篇:类加载器

一.了解JVM 1.1什么是JVM JVM是Java Virtual Machine&#xff08;Java虚拟机&#xff09;的缩写&#xff0c;是一个虚构出来的计算机&#xff0c;是通过在实际的计算机上仿真模拟计算机功能来实现的&#xff0c;JVM屏蔽了与具体操作系统平台相关的信息&#xff0c;Java程序只需…...

文本批量处理,高效便捷的管理利器!

您是否曾经为了批量处理文本数据而烦恼&#xff1f;冗长的文本文件&#xff0c;繁琐的处理步骤&#xff0c;让您的工作变得异常困难。现在&#xff0c;我们向您推荐一款文本批量处理工具&#xff0c;它能够快速、准确地处理大量文本数据&#xff0c;让您的管理工作更加高效便捷…...

百度松果20231022作业

越狱 盒子与球 斯特林第二类数&#xff08;用dp求&#xff09;*盒子的阶乘 int dp[11][11]; //n>k int A(int x){int res1;fer(i,2,x1)res*i;return res; } signed main(){IOS;dp[2][1]dp[2][2]dp[1][1]1;fer(i,3,11){dp[i][1]1;fer(j,2,i){dp[i][j]j*dp[i-1][j]dp[i-1][j-…...

cropper+jq(图片裁剪上传)

<link rel"stylesheet" href"../../cropper/cropper.css"> <script type"text/javascript" src"../../cropper/cropper.js"></script> 没有引入jquery的原因 引入jquery <script src"../jquery-1.10.2.js…...

运行 `npm install` 时的常见问题与解决方案

运行 npm install 时的常见问题与解决方案 问题一&#xff1a;网络连接问题 描述&#xff1a; 运行 npm install 时&#xff0c;可能会遇到网络连接问题&#xff0c;导致无法正常下载依赖包。 报错示例&#xff1a; npm ERR! network connection timed outnpm ERR! connect…...

【2023年11月第四版教材】软考高项极限冲刺篇笔记(1)

1 你要接受一些观点 1、不明白的不要去试图理解了,死记硬背 2、要快速过知识点,卡住是不行的,慢也是没有任何作用的。 3、将厚厚的知识,变为薄薄的重点。标红必背 4、成熟度等级,很多知识领域都有,就是评价在一个领域达到的级别。 5、记得搜一下当年的高频科技词汇 6、选…...

http post协议发送本地压缩数据到服务器

1.客户端程序 import requests import os # 指定服务器的URL url "http://192.168.1.9:8000/upload"# 压缩包文件路径 folder_name "upload" file_name "test.7z" headers {Folder-Name: folder_name,File-Name: file_name } # 发送POST请求…...

系列十三、Redis的哨兵机制

一、概述 Sentinel&#xff08;哨兵&#xff09;是Redis的高可用解决方案&#xff0c;由一个或者多个Sentinel实例组成集群&#xff0c;可以监视任意多个主服务器&#xff0c;以及这些服务器下属的所有从服务器&#xff0c;并在被监视的主服务器下线或者宕机时&#xff0c;自动…...

设置Unity URP管线中的渲染开关

在上一节中&#xff0c;我们添加了外轮廓线&#xff0c;但这个外轮廓线在所有使用该Shader的网格上是始终存在的。 如果我们想做一个开关&#xff0c;决定是否打开外轮廓线时&#xff0c;我们可以使用一个新的Uniform bool值&#xff0c;然后判断bool是否为true来开启外轮廓线…...

神器抓包工具 HTTP Analyzer v7.5 的下载,安装,使用,破解说明以及可能遇到的问题

文章目录 1、HTTP Analyzer 工具能干什么&#xff1f;2、HTTP Analyzer 如何下载&#xff1f;3、如何安装&#xff1f;4、如何使用&#xff1f;5、如何破解&#xff1f;6、Http AnalyzerStd V7可能遇到的问题 1、HTTP Analyzer 工具能干什么&#xff1f; A1&#xff1a;HTTP A…...

虚幻引擎:代理

一、代理类型 1.单薄代理 特点&#xff1a;允许有返回值&#xff0c;允许有参数&#xff0c;只可以一对一的传递消息就算绑定多个&#xff0c;但是总会被最后一个覆盖 2.多播代理 特点&#xff1a;不允许有返回值&#xff0c;允许有参数允许一对多传递消息 3.动态代理 …...

Openssl数据安全传输平台004:Socket C-API封装为C++类 / 服务端及客户端代码框架和实现

文章目录 0. 代码仓库1. 客户端C API2. 客户端C API的封装分析2.1 sckClient_init()和sckClient_destroy()2.2 sckClient_connect2.3 sckClient_closeconn()2.4 sckClient_send()2.5 sckClient_rev()2.6 sck_FreeMem 3. 客户端C API4. 服务端C API5. 服务端C6. 客户端和服务端代…...

网络协议--Traceroute程序

8.1 引言 由Van Jacobson编写的Traceroute程序是一个能更深入探索TCP/IP协议的方便可用的工具。尽管不能保证从源端发往目的端的两份连续的IP数据报具有相同的路由&#xff0c;但是大多数情况下是这样的。Traceroute程序可以让我们看到IP数据报从一台主机传到另一台主机所经过…...

三维GIS开发cesium智慧地铁教程(5)Cesium相机控制

一、环境搭建 <script src"../cesium1.99/Build/Cesium/Cesium.js"></script> <link rel"stylesheet" href"../cesium1.99/Build/Cesium/Widgets/widgets.css"> 关键配置点&#xff1a; 路径验证&#xff1a;确保相对路径.…...

Linux简单的操作

ls ls 查看当前目录 ll 查看详细内容 ls -a 查看所有的内容 ls --help 查看方法文档 pwd pwd 查看当前路径 cd cd 转路径 cd .. 转上一级路径 cd 名 转换路径 …...

Unity | AmplifyShaderEditor插件基础(第七集:平面波动shader)

目录 一、&#x1f44b;&#x1f3fb;前言 二、&#x1f608;sinx波动的基本原理 三、&#x1f608;波动起来 1.sinx节点介绍 2.vertexPosition 3.集成Vector3 a.节点Append b.连起来 4.波动起来 a.波动的原理 b.时间节点 c.sinx的处理 四、&#x1f30a;波动优化…...

免费数学几何作图web平台

光锐软件免费数学工具&#xff0c;maths,数学制图&#xff0c;数学作图&#xff0c;几何作图&#xff0c;几何&#xff0c;AR开发,AR教育,增强现实,软件公司,XR,MR,VR,虚拟仿真,虚拟现实,混合现实,教育科技产品,职业模拟培训,高保真VR场景,结构互动课件,元宇宙http://xaglare.c…...

c# 局部函数 定义、功能与示例

C# 局部函数&#xff1a;定义、功能与示例 1. 定义与功能 局部函数&#xff08;Local Function&#xff09;是嵌套在另一个方法内部的私有方法&#xff0c;仅在包含它的方法内可见。 • 作用&#xff1a;封装仅用于当前方法的逻辑&#xff0c;避免污染类作用域&#xff0c;提升…...

海云安高敏捷信创白盒SCAP入选《中国网络安全细分领域产品名录》

近日&#xff0c;嘶吼安全产业研究院发布《中国网络安全细分领域产品名录》&#xff0c;海云安高敏捷信创白盒&#xff08;SCAP&#xff09;成功入选软件供应链安全领域产品名录。 在数字化转型加速的今天&#xff0c;网络安全已成为企业生存与发展的核心基石&#xff0c;为了解…...

StarRocks 全面向量化执行引擎深度解析

StarRocks 全面向量化执行引擎深度解析 StarRocks 的向量化执行引擎是其高性能的核心设计&#xff0c;相比传统行式处理引擎&#xff08;如MySQL&#xff09;&#xff0c;性能可提升 5-10倍。以下是分层拆解&#xff1a; 1. 向量化 vs 传统行式处理 维度行式处理向量化处理数…...

Java设计模式:责任链模式

一、什么是责任链模式&#xff1f; 责任链模式&#xff08;Chain of Responsibility Pattern&#xff09; 是一种 行为型设计模式&#xff0c;它通过将请求沿着一条处理链传递&#xff0c;直到某个对象处理它为止。这种模式的核心思想是 解耦请求的发送者和接收者&#xff0c;…...

信息系统分析与设计复习

2024试卷 单选题&#xff08;20&#xff09; 1、在一个聊天系统(类似ChatGPT)中&#xff0c;属于控制类的是&#xff08;&#xff09;。 A. 话语者类 B.聊天文字输入界面类 C. 聊天主题辨别类 D. 聊天历史类 ​解析 B-C-E备选架构中分析类分为边界类、控制类和实体类。 边界…...

【Axure高保真原型】图片列表添加和删除图片

今天和大家分享图片列表添加和删除图片的原型模板&#xff0c;效果包括&#xff1a; 点击图片列表的加号可以显示图片选择器&#xff0c;选择里面的图片&#xff1b; 选择图片后点击添加按钮&#xff0c;可以将该图片添加到图片列表&#xff1b; 鼠标移入图片列表的图片&…...