扩散模型Diffusers Pipeline API使用介绍
1 关于Diffusers Pipeline
1.1 简介
大部分扩散模型包含多个独立训练的子模型和组件模块组合而成,例如StableDiffusion 有:
- 3个独立训练的子模型:Autoencoder、 Conditional Unet、CLIP text encoder
- 调度器组件scheduler,
- CLIPImageProcessor,
- safety checker.
为了让开发者以最简单的方式使用最新最先进的扩散模型,diffusers开发了pipeline管理和使用这些类,使得开发者可以以端对端方式使用扩散模型。
注意:pipeline本身没有提供任何训练相关功能,如果想要实现训练,可以参考官方的训练样例
1.2 官方Pipeline
以下表格是diffusers官方实现的Pipeline,每个Pipeline有对应的论文。
| Pipeline | Source | Tasks |
|---|---|---|
| dance diffusion | Dance Diffusion | Unconditional Audio Generation |
| ddpm | Denoising Diffusion Probabilistic Models | Unconditional Image Generation |
| ddim | Denoising Diffusion Implicit Models | Unconditional Image Generation |
| latent_diffusion | High-Resolution Image Synthesis with Latent Diffusion Models | Text-to-Image Generation |
| latent_diffusion_uncond | High-Resolution Image Synthesis with Latent Diffusion Models | Unconditional Image Generation |
| pndm | Pseudo Numerical Methods for Diffusion Models on Manifolds | Unconditional Image Generation |
| score_sde_ve | Score-Based Generative Modeling through Stochastic Differential Equations | Unconditional Image Generation |
| score_sde_vp | Score-Based Generative Modeling through Stochastic Differential Equations | Unconditional Image Generation |
| stable_diffusion | Stable Diffusion | Text-to-Image Generation |
| stable_diffusion | Stable Diffusion | Image-to-Image Text-Guided Generation |
| stable_diffusion | Stable Diffusion | Text-Guided Image Inpainting |
| stochastic_karras_ve | Elucidating the Design Space of Diffusion-Based Generative Models | Unconditional Image Generation |
2 Pipeline API接口
扩散模型包含多个独立的模型和组件,不同任务中模型独立训练,并且可以用其他模型替换。不同的Pipeline可能包含专有的函数接口,但所有Pipeline都有的共同函数如下:
- from_pretrained(cls, pretrained_model_name_or_path, **kwargs): 参数
pretrained_model_name_or_path可以是Hugging Face Hub repository的 id, 例如: runwayml/stable-diffusion-v1-5 或本地路径:"./stable-diffusion". 为了确保所有模型和组件能被正确加载,需要提供一个model_index.json文件, 例如: runwayml/stable-diffusion-v1-5/model_index.json, 这个文件定义了所有要被加载的组件。其格式如下:<name>: ["<library>", "<class name>"],其中<name>是类<class name>实例的名称。此类可以在库"<library>"中加载到。 - save_pretrained(self, save_directory) : 参数save_directory为本地目录路径,例如:
./stable-diffusion,所有的模型和组件会被保存。每个模型和组件创建一个对应的子目录,子目录名称为模型或组件的属性名称如./stable_diffusion/unet. 此外,还会再根目录创建model_index.json文件如:./stable_diffusion/model_index.json - to(self, torch_device: Optional[Union[str, torch.device]] = None) 参数torch_device为
string或torch.device类型,将所有torch.nn.Module类型的对象转移到指定的device上,此函数与pytorch的to函数功能一致。 __call__函数执行推理,此函数定义了pipeline的推理逻辑,不同的Pipeline对应的推理输入差别很大,例如文生图PipelineStableDiffusionPipeline的输入应该是文本prompt,输出是生成的图。 而DDPMPipeline 则无需提供任何输入。因此读者需要根据实际的Pipeline功能以及查看相应的官方文档使用。
注意: 所有的Pipeline的
__call__函数会自动调用torch.no_grad函数禁用梯度,因为Pipeline不是用于训练。如果你在前向推理后有保存梯度的需求,可以自定义Pipeline,参考官方示例
3 使用示例
1 扩散模型:文生图
# make sure you're logged in with `huggingface-cli login`
from diffusers import StableDiffusionPipeline, LMSDiscreteSchedulerpipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
pipe = pipe.to("cuda")prompt = "a photo of an astronaut riding a horse on mars"
image = pipe(prompt).images[0] image.save("astronaut_rides_horse.png")
2 扩散模型:图生图
类StableDiffusionImg2ImgPipeline 接受一个文本prompt和初始图片作为条件,指导生成新图。
import requests
from PIL import Image
from io import BytesIOfrom diffusers import StableDiffusionImg2ImgPipeline# load the pipeline
device = "cuda"
pipe = StableDiffusionImg2ImgPipeline.from_pretrained("runwayml/stable-diffusion-v1-5",torch_dtype=torch.float16,
).to(device)# let's download an initial image
url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"response = requests.get(url)
init_image = Image.open(BytesIO(response.content)).convert("RGB")
init_image = init_image.resize((768, 512))prompt = "A fantasy landscape, trending on artstation"images = pipe(prompt=prompt, image=init_image, strength=0.75, guidance_scale=7.5).imagesimages[0].save("fantasy_landscape.png")
可以在colab中直接运行colab
3 扩充模型:In-painting
类 StableDiffusionInpaintPipeline 接受文本prompt和mask,用于编辑图像指定区域。
import PIL
import requests
import torch
from io import BytesIOfrom diffusers import StableDiffusionInpaintPipelinedef download_image(url):response = requests.get(url)return PIL.Image.open(BytesIO(response.content)).convert("RGB")img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"init_image = download_image(img_url).resize((512, 512))
mask_image = download_image(mask_url).resize((512, 512))pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting",torch_dtype=torch.float16,
)
pipe = pipe.to("cuda")prompt = "Face of a yellow cat, high resolution, sitting on a park bench"
image = pipe(prompt=prompt, image=init_image, mask_image=mask_image).images[0]
可以在colab中直接运行 colab
相关文章:
扩散模型Diffusers Pipeline API使用介绍
1 关于Diffusers Pipeline 1.1 简介 大部分扩散模型包含多个独立训练的子模型和组件模块组合而成,例如StableDiffusion 有: 3个独立训练的子模型:Autoencoder、 Conditional Unet、CLIP text encoder调度器组件scheduler,CLIPImageProcesso…...
el-date-picker 组件 监听输入的内容 并按照时间格式 格式化
这个时间选择组件在输入的时候是监听不到输入的值的,所以我们在外层再套个div,然后用获取焦点事件去操作dom 页面中 <div id"inParkingData"><el-date-pickerv-model"indateRange"size"small"value-format"…...
组件通信$refs | $parent |$root
父组件传值子组件用Props 子组件传值父组件用$emit 父组件直接还可以直接取子组件的值用$refs 父组件直接从子子组件中获取值$refs 不建议使用会增加组件之间的耦合度,一般用于第三方插件的封装 ref如果绑定在dom节点上,拿到的就是原生dom节点。 ref如…...
springboot中@Async的使用
1.AsyncAnnotationBeanPostProcessor是主要逻辑类 (1)AsyncAnnotationBeanPostProcessor实现BeanFactoryAware接口 在setBeanFactory(BeanFactory beanFactory)中初始化advisorAsyncAnnotationAdvisor() (2)AsyncAnnotationBeanPostProcessor实现BeanPostProcessor接口 在p…...
学C++从CMake学起
Cmake在此引入c17编译器,就可以使用c17的新特性了。 c17定义了一些算法,都定义在了下面这个头文件里。 #include <numeric> 通过redurce函数求和 将9行的std::plus{}换成std::times{}就是相乘。...
lv8 嵌入式开发-网络编程开发 20 域名解析与http服务实现原理
目录 1 域名解析 2 如何实现万维网服务器? 2.1 HTTP 的操作过程 2.2 万维网服务器实现 1 域名解析 域名解析gethostbyname函数 主机结构在 <netdb.h> 中定义如下: struct hostent {char *h_name; /* 官方域名 */char **h_alias…...
只要路由器有WPS按钮,佳能打印机连接到Wi-Fi网络的方法就很简单
佳能打印机是很好的设备,可以让你从智能手机、电脑或平板电脑打印照片。它们还提供其他功能,如扫描文档和复制图像。 最新的型号还允许你连接到Wi-Fi,因此你不需要使用电线将设备连接到打印机。 Wi-Fi是通过本地网络传输数据的标准方式。它…...
Cmake输出git内容方式
实现背景 在定位问题时,固件无法获取当前设备中版本的详细信息,无法准确获取版本具体内容 输出效果 实现方式 以下是基于Cmake的语法实现 在CMake中获取git信息,可以通过execute_process命令运行git命令并将结果保存在一个变量中。然后可…...
实现多余内容变成省略号
实现效果 代码 <p class"item-content">{{ item.content }}</p>样式 .item-content {white-space: nowrap;/* 禁止换行 */overflow: hidden;/* 隐藏溢出部分 */text-overflow: ellipsis;/* 使用省略号表示溢出部分 */ }...
WAL 模式(PostgreSQL 14 Internals翻译版)
性能 当服务器正常运行时,WAL文件不断被写入磁盘。但是,这些写操作是顺序的:几乎没有随机访问,因此即使是HDD也可以处理这个任务。由于这种类型的加载与典型的数据文件访问非常不同,因此有必要为WAL文件设置一个单独的物理存储&a…...
2023年信息科学与工程学院学生科协第二次软件培训
2023年信息科学与工程学院学生科协第二次软件培训 文章目录 2023年信息科学与工程学院学生科协第二次软件培训一维数组数组的概念定义格式一维数组的访问例题:练习题: 数组元素数量一维数组的初始化 二维数组定义格式二维数组的访问二维数组的存储结构二…...
渗透测试tomcat错误信息泄露解决办法
解决方法: 1、使用tomcat8.5.16,会重定向非法url到登录url 2、配置server.xml,加上 <Valve className"org.apache.catalina.valves.ErrorReportValve" showReport"false" showServerInfo"false" />配置…...
notes_NLP
RNN > LSTM, GRU model特点RNNLSTMinputforgetputput;GRUresetupdate;参数比LSTM少,计算效率更高; 循环神经网络(RNN/LSTM/GRU) 人人都能看懂的GRU transformer > self-attention 根据Query和Key计…...
内存分段、分页
大家好,我叫徐锦桐,个人博客地址为www.xujintong.com。平时记录一下学习计算机过程中获取的知识,还有日常折腾的经验,欢迎大家访问。 前言 每个进程都有一套自己的虚拟地址,尽管进程可能有相同的虚拟地址,…...
Python-pptx教程之一从零开始生成PPT文件
简介 python-pptx是一个用于创建、读取和更新PowerPoint(.pptx)文件的python库。 典型的用途是根据动态内容(如数据库查询、分析数据等),将这些内容自动化生成PowerPoint演示文稿,将数据可视化,…...
k8s 使用ingress-nginx访问集群内部应用
k8s搭建和部署应用完成后,可以通过NodePort,Loadbalancer,Ingress方式将应用端口暴露到集群外部,提供外部访问。 缺点: NodePort占用端口,大量暴露端口非常不安全,并且有端口数量限制【不推荐】…...
企业数据泄露怎么办?
随着数字化时代的到来,威胁企业数据安全的因素越来越多。一旦机密数据泄露,不仅会对企业造成巨大的经济损失,还会对企业的声誉和客户信任度造成严重影响。发生数据泄露情况时,企业该怎样应对? 1.确认数据泄露 确认是…...
GoLong的学习之路(一)语法之变量与常量
目录 GoLang变量批量声明变量的初始化类型推导短变量声明匿名变量 常量iota(特殊)(需要重点记忆) GoLang go的诞生为了解决在21世纪多核和网络化环境越来越复杂的变成问题而发明的Go语言。 go语言是从Ken Thomepson发明的B语言和…...
Go-Python-Java-C-LeetCode高分解法-第十一周合集
前言 本题解Go语言部分基于 LeetCode-Go 其他部分基于本人实践学习 个人题解GitHub连接:LeetCode-Go-Python-Java-C 欢迎订阅CSDN专栏,每日一题,和博主一起进步 LeetCode专栏 我搜集到了50道精选题,适合速成概览大部分常用算法 突…...
封装axios的两种方式
作为前端工程师,经常需要对axios进行封装以满足复用的目的。在不同的前端项目中使用相同的axios封装有利于保持一致性,有利于数据之间的传递和处理。本文提供两种对axios进行封装的思路。 1. 将请求方式作为调用参数传递进来 首先导入了axios, AxiosIn…...
多云管理“拦路虎”:深入解析网络互联、身份同步与成本可视化的技术复杂度
一、引言:多云环境的技术复杂性本质 企业采用多云策略已从技术选型升维至生存刚需。当业务系统分散部署在多个云平台时,基础设施的技术债呈现指数级积累。网络连接、身份认证、成本管理这三大核心挑战相互嵌套:跨云网络构建数据…...
深入浅出Asp.Net Core MVC应用开发系列-AspNetCore中的日志记录
ASP.NET Core 是一个跨平台的开源框架,用于在 Windows、macOS 或 Linux 上生成基于云的新式 Web 应用。 ASP.NET Core 中的日志记录 .NET 通过 ILogger API 支持高性能结构化日志记录,以帮助监视应用程序行为和诊断问题。 可以通过配置不同的记录提供程…...
Unity3D中Gfx.WaitForPresent优化方案
前言 在Unity中,Gfx.WaitForPresent占用CPU过高通常表示主线程在等待GPU完成渲染(即CPU被阻塞),这表明存在GPU瓶颈或垂直同步/帧率设置问题。以下是系统的优化方案: 对惹,这里有一个游戏开发交流小组&…...
全球首个30米分辨率湿地数据集(2000—2022)
数据简介 今天我们分享的数据是全球30米分辨率湿地数据集,包含8种湿地亚类,该数据以0.5X0.5的瓦片存储,我们整理了所有属于中国的瓦片名称与其对应省份,方便大家研究使用。 该数据集作为全球首个30米分辨率、覆盖2000–2022年时间…...
ElasticSearch搜索引擎之倒排索引及其底层算法
文章目录 一、搜索引擎1、什么是搜索引擎?2、搜索引擎的分类3、常用的搜索引擎4、搜索引擎的特点二、倒排索引1、简介2、为什么倒排索引不用B+树1.创建时间长,文件大。2.其次,树深,IO次数可怕。3.索引可能会失效。4.精准度差。三. 倒排索引四、算法1、Term Index的算法2、 …...
selenium学习实战【Python爬虫】
selenium学习实战【Python爬虫】 文章目录 selenium学习实战【Python爬虫】一、声明二、学习目标三、安装依赖3.1 安装selenium库3.2 安装浏览器驱动3.2.1 查看Edge版本3.2.2 驱动安装 四、代码讲解4.1 配置浏览器4.2 加载更多4.3 寻找内容4.4 完整代码 五、报告文件爬取5.1 提…...
#Uniapp篇:chrome调试unapp适配
chrome调试设备----使用Android模拟机开发调试移动端页面 Chrome://inspect/#devices MuMu模拟器Edge浏览器:Android原生APP嵌入的H5页面元素定位 chrome://inspect/#devices uniapp单位适配 根路径下 postcss.config.js 需要装这些插件 “postcss”: “^8.5.…...
Git 3天2K星标:Datawhale 的 Happy-LLM 项目介绍(附教程)
引言 在人工智能飞速发展的今天,大语言模型(Large Language Models, LLMs)已成为技术领域的焦点。从智能写作到代码生成,LLM 的应用场景不断扩展,深刻改变了我们的工作和生活方式。然而,理解这些模型的内部…...
篇章二 论坛系统——系统设计
目录 2.系统设计 2.1 技术选型 2.2 设计数据库结构 2.2.1 数据库实体 1. 数据库设计 1.1 数据库名: forum db 1.2 表的设计 1.3 编写SQL 2.系统设计 2.1 技术选型 2.2 设计数据库结构 2.2.1 数据库实体 通过需求分析获得概念类并结合业务实现过程中的技术需要&#x…...
【iOS】 Block再学习
iOS Block再学习 文章目录 iOS Block再学习前言Block的三种类型__ NSGlobalBlock____ NSMallocBlock____ NSStackBlock__小结 Block底层分析Block的结构捕获自由变量捕获全局(静态)变量捕获静态变量__block修饰符forwarding指针 Block的copy时机block作为函数返回值将block赋给…...
