代码解读-自然语言处理
目录
- demo3文本转为向量
- 代码
- 解读
- 给出每一步的输出
demo3文本转为向量
代码
from tensorflow.keras.preprocessing.text import Tokenizer # 标记器(每一个词,以我们的数值做映射,)words = ['LaoWang has a Wechat account.', 'He is not a nice person.', 'Be careful.'] # 把这句话中每一个单词,映射成我们的数值
tokenizer = Tokenizer(num_words=15) # 上面三句话中,词的总数不超过 15 个(估算的值), num_words 设置单词的数量
tokenizer.fit_on_texts(words)
word_index = tokenizer.word_index
print(word_index, len(word_index))
# 把文本转化为序列编码
sequences = tokenizer.texts_to_sequences(words)
print(sequences)
# 文本转化为矩阵
one_hot_matrix = tokenizer.texts_to_matrix(words, mode='binary')
# 向量化是构建神经网络的第一步
print(tokenizer.word_index.keys())
print(one_hot_matrix, one_hot_matrix.shape)
解读
这段代码使用tensorflow
的keras
库中的Tokenizer
类对文本数据进行预处理。让我们逐步解读这段代码:
- 导入必要的库
from tensorflow.keras.preprocessing.text import Tokenizer
这行代码导入了Tokenizer
类,这是一个用于文本标记化的工具,可以将每个词映射到一个数值。
- 定义文本数据
words = ['LaoWang has a Wechat account.', 'He is not a nice person.', 'Be careful.']
这里定义了一个包含三个句子的列表。
- 初始化标记器
tokenizer = Tokenizer(num_words=15)
这里创建了一个Tokenizer
对象,设置了最大的单词数为15。这意味着它只会考虑频率最高的15个单词。
- 适应数据
tokenizer.fit_on_texts(words)
这行代码会将定义的句子列表传给标记器,使其学习句子中的单词及其频率。
- 获取词到索引的映射
word_index = tokenizer.word_index
print(word_index, len(word_index))
这里获取了每个词及其对应的索引,并打印它们。len(word_index)
将显示总共有多少个唯一单词。
- 将文本转化为序列编码
sequences = tokenizer.texts_to_sequences(words)
print(sequences)
此行代码将原始句子转化为整数序列,每个整数对应句子中的一个单词。例如,如果“LaoWang”对应的索引是1,则“LaoWang”在序列中将被替换为1。
- 文本转化为矩阵
one_hot_matrix = tokenizer.texts_to_matrix(words, mode='binary')
这行代码将句子转换为二进制矩阵。如果一个词在句子中,那么它的位置为1,否则为0。
- 显示单词和矩阵
print(tokenizer.word_index.keys())
print(one_hot_matrix, one_hot_matrix.shape)
这两行代码首先打印出所有的单词,然后打印出转化后的二进制矩阵以及它的形状。
综上所述,这段代码的主要目的是展示如何使用Tokenizer
进行文本的预处理,从而为后续的神经网络模型做准备。
给出每一步的输出
在每行代码的末尾添加注释,以描述其执行后的结果。
from tensorflow.keras.preprocessing.text import Tokenizerwords = ['LaoWang has a Wechat account.', 'He is not a nice person.', 'Be careful.'] # words = ['LaoWang has a Wechat account.', 'He is not a nice person.', 'Be careful.']tokenizer = Tokenizer(num_words=15) # 初始化了一个 Tokenizer 对象tokenizer.fit_on_texts(words) # 这里没有直接的输出,它只是让 tokenizer 学习 words 的内容word_index = tokenizer.word_index
print(word_index, len(word_index)) # 输出 word_index 的内容和它的长度, 例如: {'laowang': 1, 'has': 2,...} 12sequences = tokenizer.texts_to_sequences(words)
print(sequences) # 输出 sequences, 例如: [[1, 2, 3, 4, 5], [6, 7, 8, 3, 9, 10], [11, 12]]one_hot_matrix = tokenizer.texts_to_matrix(words, mode='binary')
# 没有直接的输出,但 one_hot_matrix 会变成一个二进制矩阵print(tokenizer.word_index.keys()) # 输出 word_index 的所有键,例如: dict_keys(['laowang', 'has',...])
print(one_hot_matrix, one_hot_matrix.shape) # 输出 one_hot_matrix 的内容和形状, 例如: [[0., 1., 1., ...], ...] (3, 15)
注意:以上的输出值示例(例如:'laowang': 1, 'has': 2,...
)是基于输入数据而给出的假设。实际的输出可能会根据具体的输入数据和Tokenizer
的实现方式而有所不同。
相关文章:
代码解读-自然语言处理
目录 demo3文本转为向量代码解读给出每一步的输出 demo3文本转为向量 代码 from tensorflow.keras.preprocessing.text import Tokenizer # 标记器(每一个词,以我们的数值做映射,)words [LaoWang has a Wechat account., He is not a nice person., …...
docker指令
镜像操作: # 搜索镜像 docker search image_name # 搜索结果过滤:是否是官方 docker search --filter --filter is-official image_name # 搜索结果过滤:是否是自动化构建 docker search --filter --filter is-automated image_name # 搜索结…...

【MySql】9- 实践篇(七)
文章目录 1. 一主多从的主备切换1.1 基于位点的主备切换1.2 GTID1.3 基于 GTID 的主备切换1.4 GTID 和在线 DDL 2. 读写分离问题2.1 强制走主库方案2.2 Sleep 方案2.3 判断主备无延迟方案2.4 配合 semi-sync方案2.5 等主库位点方案2.6 GTID 方案 3. 如何判断数据库是否出问题了…...
Maven compile时报错 系统资源不足,出现OOM:GC overhead limit exceeded
今天在对项目进行Maven clean compile的时候,报出了如下的错误, 系统资源不足。 有关详细信息,请参阅一下堆栈跟踪。 java.lang.OutOfMemoryError: GC overhead limit exceededat java.util.EnumSet.noneOf(EnumSet.java:115)at com.sun.too…...
启动内核ip转发和其他优化
1.临时修改 echo 1 > /proc/sys/net/ipv4/ip_forward echo 1 > /proc/sys/net/ipv4/tcp_tw_reuse 2.配置文件修改 vim /etc/sysctl.conf net.ipv4.ip_forward 1 net.ipv4.tcp_tw_reuse 1 vm.swappiness 0 kernel.sysrq 1 net.ipv4.neigh.default.gc_stale_t…...

信息安全技术
1.与区块链相关的技术 区块链技术的核心是一系列的信息安全技术,其体系结构为: 区块链技术核心相关技术:A..非对称加密 B.时间戳 C.哈希函数 D.智能合约 E.POS 2.哈希函数 哈希算法 MD5SHA 哈希算法作用 用于保障信息完…...
SQL 选择数据库 USE语句
SQL 选择数据库 USE语句 当SQL Schema中有多个数据库时,在开始操作之前,需要选择一个执行所有操作的数据库。 SQL USE语句用于选择SQL架构中的任何现有数据库。 句法 USE语句的基本语法如下所示 : USE DatabaseName;数据库名称在RDBMS中必须是唯一的。…...

FL Studio21版无限破解版下载 软件内置破解补丁
FL Studio是一款非常好用方便的音频媒体制作工具,它的功能是非常的强大全面的,想必那些喜欢音乐创作的朋友们应该都知道这款软件是多么的好用吧,它还能够给用户们带来更多的创作灵感,进一步加强提升我们的音乐制作能力。该软件还有…...

【代码随想录】算法训练计划02
1、977. 有序数组的平方 给你一个按 非递减顺序 排序的整数数组 nums,返回 每个数字的平方 组成的新数组,要求也按 非递减顺序 排序。 输入:nums [-4,-1,0,3,10] 输出:[0,1,9,16,100] 思路: 这题思路在于——双指针…...
hive针对带有特殊字符非法json数据解析
一、背景 有的时候前端或者后端进行埋点日志,会把json里面的数据再加上双引号,或者特殊字符,在落日志的时候,组装的格式就不是正常的json数据了,我们就需要将带有特殊字符的json数据解析成正常的json数据。 二、正则…...

【C++进阶之路】第三篇:二叉搜索树 kv模型
文章目录 一、二叉搜索树1.二叉搜索树概念2.二叉搜索树操作3.二叉搜索树的实现 二、二叉搜索树的应用1.kv模型2.kv模型的实现 三、 二叉搜索树的性能分析 一、二叉搜索树 1.二叉搜索树概念 二叉搜索树又称二叉排序树,它或者是一棵空树,或者是具有以下性…...

【Oracle】Navicat Premium 连接 Oracle的两种方式
Navicat Premium 使用版本说明 Navicat Premium 版本 11.2.16 (64-bit) 一、配置OCI 1.1 配置OCI环境变量 1.1.2 设置\高级系统设置 1.1.2 系统属性\高级\环境变量(N) 1.1.3 修改/添加系统变量 ORACLE_HOME ORACLE_HOME D:\app\root\product\12.1.0\dbhome_11.1.4 添加系…...
在python里如何实现switch函数的功能
在许多编程语言中,包括Python,都提供了switch语句或类似的功能来根据不同的条件执行不同的代码块。然而,Python本身并没有内置的switch语句,但是您可以使用其他方式来实现类似的功能。下面是一种常见的方法: 使用if-e…...

Python 继承和子类示例:从 Person 到 Student 的演示
继承允许我们定义一个类,该类继承另一个类的所有方法和属性。父类是被继承的类,也叫做基类。子类是从另一个类继承的类,也叫做派生类。 创建一个父类 任何类都可以成为父类,因此语法与创建任何其他类相同: 示例&…...

DevOps持续集成-Jenkins(3)
文章目录 DevOpsDevOps概述Jenkins实战3:实战1和实战2的加强版(新增SonarQube和Harbor)⭐环境准备⭐项目架构图对比Jenkins实战1和实战2,新增内容有哪些?SonarQube教程采用Docker安装SonarQube (在Jenkins所…...

TypeScript之索引签名
1. 索引签名 在 TypeScript 中,索引签名是一种定义对象类型的方式,它允许我们使用字符串或数字作为索引来访问对象的属性。 索引签名最主要的作用就是允许我们动态地添加或访问对象的属性,通过使用索引签名,我们可以在编译时无法…...

k8s-----24、亲和力Affinity
1、应用场景 pod和节点间的关系: 某些Pod优先选择有ssdtrue标签的节点,如果没有在考虑部署到其它节点;某些Pod需要部署在ssdtrue和typephysical的节点上,但是优先部署在ssdtrue的节点上; pod和pod间的关系: 同一个应用的Pod不…...
860. 柠檬水找零
在柠檬水摊上,每一杯柠檬水的售价为 5 美元。顾客排队购买你的产品,(按账单 bills 支付的顺序)一次购买一杯。 每位顾客只买一杯柠檬水,然后向你付 5 美元、10 美元或 20 美元。你必须给每个顾客正确找零,…...

Flink将数据写入MySQL(JDBC)
一、写在前面 在实际的生产环境中,我们经常会把Flink处理的数据写入MySQL、Doris等数据库中,下面以MySQL为例,使用JDBC的方式将Flink的数据实时数据写入MySQL。 二、代码示例 2.1 版本说明 <flink.version>1.14.6</flink.version…...

react-typescript-demo
1.使用 Context 来存储数据...

接口测试中缓存处理策略
在接口测试中,缓存处理策略是一个关键环节,直接影响测试结果的准确性和可靠性。合理的缓存处理策略能够确保测试环境的一致性,避免因缓存数据导致的测试偏差。以下是接口测试中常见的缓存处理策略及其详细说明: 一、缓存处理的核…...

【JavaEE】-- HTTP
1. HTTP是什么? HTTP(全称为"超文本传输协议")是一种应用非常广泛的应用层协议,HTTP是基于TCP协议的一种应用层协议。 应用层协议:是计算机网络协议栈中最高层的协议,它定义了运行在不同主机上…...

Zustand 状态管理库:极简而强大的解决方案
Zustand 是一个轻量级、快速和可扩展的状态管理库,特别适合 React 应用。它以简洁的 API 和高效的性能解决了 Redux 等状态管理方案中的繁琐问题。 核心优势对比 基本使用指南 1. 创建 Store // store.js import create from zustandconst useStore create((set)…...

Vue3 + Element Plus + TypeScript中el-transfer穿梭框组件使用详解及示例
使用详解 Element Plus 的 el-transfer 组件是一个强大的穿梭框组件,常用于在两个集合之间进行数据转移,如权限分配、数据选择等场景。下面我将详细介绍其用法并提供一个完整示例。 核心特性与用法 基本属性 v-model:绑定右侧列表的值&…...

现代密码学 | 椭圆曲线密码学—附py代码
Elliptic Curve Cryptography 椭圆曲线密码学(ECC)是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础,例如椭圆曲线数字签…...
JDK 17 新特性
#JDK 17 新特性 /**************** 文本块 *****************/ python/scala中早就支持,不稀奇 String json “”" { “name”: “Java”, “version”: 17 } “”"; /**************** Switch 语句 -> 表达式 *****************/ 挺好的ÿ…...

华为云Flexus+DeepSeek征文|DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建
华为云FlexusDeepSeek征文|DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建 前言 如今大模型其性能出色,华为云 ModelArts Studio_MaaS大模型即服务平台华为云内置了大模型,能助力我们轻松驾驭 DeepSeek-V3/R1,本文中将分享如何…...

SiFli 52把Imagie图片,Font字体资源放在指定位置,编译成指定img.bin和font.bin的问题
分区配置 (ptab.json) img 属性介绍: img 属性指定分区存放的 image 名称,指定的 image 名称必须是当前工程生成的 binary 。 如果 binary 有多个文件,则以 proj_name:binary_name 格式指定文件名, proj_name 为工程 名&…...

AI病理诊断七剑下天山,医疗未来触手可及
一、病理诊断困局:刀尖上的医学艺术 1.1 金标准背后的隐痛 病理诊断被誉为"诊断的诊断",医生需通过显微镜观察组织切片,在细胞迷宫中捕捉癌变信号。某省病理质控报告显示,基层医院误诊率达12%-15%,专家会诊…...
纯 Java 项目(非 SpringBoot)集成 Mybatis-Plus 和 Mybatis-Plus-Join
纯 Java 项目(非 SpringBoot)集成 Mybatis-Plus 和 Mybatis-Plus-Join 1、依赖1.1、依赖版本1.2、pom.xml 2、代码2.1、SqlSession 构造器2.2、MybatisPlus代码生成器2.3、获取 config.yml 配置2.3.1、config.yml2.3.2、项目配置类 2.4、ftl 模板2.4.1、…...