当前位置: 首页 > news >正文

ChatGLM系列二:ChatGLM2的介绍及代码实践

一、介绍

2023年06月25日,清华大学开源了 ChatGLM2-6B 模型,是 ChatGLM 模型的升级版本。ChatGLM2-6B 在多个方面有显著提升:模型性能更强,在各种测试集上的表现更好;支持更长的上下文,最大上下文长度提升到 32k;推理速度提高42%,能支持更长的生成;开源许可更加开放,允许商业使用。ChatGLM2-6B在多个维度的能力上取得了巨大提升,包括数理逻辑、知识推理和长文档理解。

模型性能提升主要来自升级的基座模型、混合了 GLM 目标函数、使用 FlashAttention 和Multi-Query Attention 技术。它整合了最新技术,在推理速度、生成长度、知识涵盖等方面取得突破,使人机对话能力更强大。

ChatGLM2-6B(GitHub项目地址、HuggingFace地址)是开源中英双语对话模型 ,相比第一代,第二点引入了如下新特性:

  1. 数据集上

    经过了 1.4T 中英标识符的预训练与人类偏好对齐训练

  2. 更长的上下文

    基于 FlashAttention 技术,将基座模型的上下文长度(Context Length)由 ChatGLM-6B 的 2K 扩展到了 32K,并在对话阶段使用 8K 的上下文长度训练,允许更多轮次的对话
    (当前版本的 ChatGLM2-6B 对单轮超长文档的理解能力有限,会在后续迭代升级中着重进行优化)

  3. 更高效的推理

    基于 Multi-Query Attention 技术,ChatGLM2-6B 有更高效的推理速度和更低的显存占用:在官方的模型实现下,推理速度相比初代提升了 42%,INT4 量化下,6G 显存支持的对话长度由 1K 提升到了 8K

  4. 模型架构上变成了decoder only的架构

    chatglm还是encoder架构,但是到了chatglm2 变成了decoder only的架构(这点很少有资料会提及到),何以见得呢?
    chatglm2仓库的modeling用了新版pytorch的这个函数:context_layer​

    context_layer 这个函数实现了attention机制的计算,入参 is_causal=True 表示遮后看前的mask(这种类型的注意力通常用在transformer的decoder部分,以确保当前位置只能关注到之前的位置,俗称“看不见未来”,从而使模型可以进行自回归预测 )

  5. 允许商业使用

  6. 准确性不足

    尽管模型在训练的各个阶段都尽力确保数据的合规性和准确性,但由于 ChatGLM2-6B 模型规模较小,且模型受概率随机性因素影响,无法保证输出内容的准确性,且模型易被误导

对比:ChatGLM-6B、ChatGLM2-6B

在这里插入图片描述

  1. 充分的中英双语预训练: ChatGLM2-6B 在 1:1 比例的中英语料上训练了 1.4T的token 量(*4倍≈5G的语料),兼具双语能力,相比于ChatGLM-6B初代模型,性能大幅提升。
  2. 较低的部署门槛: FP16 半精度下,ChatGLM-6B 需要至少13GB 的显存进行推理,结合模型量化技术,这一需求可以进一步降低到10GB(INT8)和 6GB(INT4), 使得 ChatGLM-6B 可以部署在消费级显卡上。
  3. 更长的序列长度: 相比GLM-10B(序列长度1024), ChatGLM-6B序列长度达 2048,ChatGLM2-6B序列 长度达8192(≈1万多的文字),支持更长对话和应用。
  4. 人类意图对齐训练: 使用了监督微调、反馈自助、人类反馈强化学习等方式,使模型初具理解人类指令意图的能力。

二、模型部署

1、拉取代码

git clone https://github.com/THUDM/ChatGLM2-6Bcd ChatGLM2-6Bpip install -r requirements.txt

2、代码调用

from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm2-6b", trust_remote_code=True)
model = AutoModel.from_pretrained("THUDM/chatglm2-6b", trust_remote_code=True, device='cuda')
model = model.eval()
response, history = model.chat(tokenizer, "你好", history=[])
print(response)
>>> response, history = model.chat(tokenizer, "请问钓鱼有什么技巧", history=history)
>>> print(response)

3、web部署

pip install gradio
python web_demo.py
#默认使用了 share=False 启动,不会生成公网链接。如有需要公网访问的需求,可以修改为 share=True 启动
#基于 Streamlit 的网页版 Demo web_demo2.py
pip install streamlit streamlit-chat
streamlit run web_demo2.py

4、命令行

python cli_demo.py
#程序会在命令行中进行交互式的对话,在命令行中输入指示并回车即可生成回复,输入 clear 可以清空对话历史,输入 stop 终止程序。

5、api部署

pip install fastapi uvicorn
python api.py

默认部署在本地的 8000 端口,通过 POST 方法进行调用

curl -X POST "http://127.0.0.1:8000" \-H 'Content-Type: application/json' \-d '{"prompt": "你好", "history": []}'
{"response":"你好👋!我是人工智能助手 ChatGLM2-6B,很高兴见到你,欢迎问我任何问题。","history":[["你好","你好👋!我是人工智能助手 ChatGLM2-6B,很高兴见到你,欢迎问我任何问题。"]],"status":200,"time":"2023-03-23 21:38:40"
}

相关文章:

ChatGLM系列二:ChatGLM2的介绍及代码实践

一、介绍 2023年06月25日,清华大学开源了 ChatGLM2-6B 模型,是 ChatGLM 模型的升级版本。ChatGLM2-6B 在多个方面有显著提升:模型性能更强,在各种测试集上的表现更好;支持更长的上下文,最大上下文长度提升…...

JDBC对数据库进行操作

一.使用JDBC查询数据库表t_user的所有数据 1.User表 名称 数据类型 主键 是否为空 说明 ID number 是 用户编号 NAME Varchar2(50) 用户名 AGE varchar2(5) 用户年龄 BIRTH date 用户生日 PWD varchar2(20) 否 用户密码 import java.sql.Connection; import java.sql.Date; …...

unity 使用Image的RectTransform来进行判断是否点击到

public RectTransform LeftTouchArea;public RectTransform RightTouchArea;private void Update(){if (Input.GetMouseButtonDown(0)){//获取鼠标的位置Vector2 mousePos Input.mousePosition;//判断Image的坐标是否包含点击的坐标if (RectTransformUtility.RectangleContain…...

【C++】类与对象 第一篇(class,this)

目录 什么是类? 类的引入 class 类的两种定义方式: 声明与定义分离 类的访问限定符号 访问限定符​编辑 C中struct和class的区别是什么? 封装 类的作用域 类的实例化 类对象模型 如何计算类对象的大小 this指针 C语言和C实现Stack的对比 C语言实现…...

嵌入式软件工程师面试题——2025校招专题(四)

说明: 面试题来源于网络书籍,公司题目以及博主原创或修改(题目大部分来源于各种公司);文中很多题目,或许大家直接编译器写完,1分钟就出结果了。但在这里博主希望每一个题目,大家都要…...

actual combat 21——华为云从零开始项目部署(附nginx转发域名方式)

一、IP地址方式: 后端: 确保项目本地跑通建立并运行华为云流水线 前端: 打包(测试环境)手动上传 nginx: 配置一下即可 华为云: 安全组:暴露后端网关端口安全组:暴…...

@CallSuper注解方法学习

CallSuper注解是什么? CallSuper 是 Android 开发中使用的一个注解,它的主要用途是确保在子类重写父类的方法时,调用 super 方法。这在某些情况下是非常有用的,例如当你希望在重写方法时保留父类的默认行为,或者确保子…...

03_Flutter自定义下拉菜单

03_Flutter自定义下拉菜单 在Flutter的内置api中,可以使用showMenu实现类似下拉菜单的效果,或者使用PopupMenuButton组件,PopupMenuButton内部也是使用了showMenu这个api,但是使用showMenu时,下拉面板的显示已经被约定…...

如何查看多开的逍遥模拟器的adb连接端口号

逍遥模拟器默认端口号为:21503。 不过,使用多开器多开的时候,端口就不一定是21503了。 如何查看? 进入G:\xiaoyao\Microvirt\MEmu\MemuHyperv VMs路径中 每多开一个模拟器,就会多出一个文件夹。 进入你要查找端口号…...

2023年中国道路扫雪车分类、市场规模及发展前景分析[图]

道路扫雪车是一种专门用于清除道路上积雪和冰雪的机动车辆,通常配备有雪铲、扫雪刷、除冰剂喷洒系统等装置,用于在雪季或寒冷气候条件下,对道路进行清扫、除雪、除冰等作业,以确保道路的通行安全。 道路扫雪车行业分类 资料来源&…...

【机器学习】迁移学习(Transfer)详解!

1. 什么是迁移学习 迁移学习(Transfer Learning)是一种机器学习方法,就是把为任务 A 开发的模型作为初始点,重新使用在为任务 B 开发模型的过程中。迁移学习是通过从已学习的相关任务中转移知识来改进学习的新任务,虽然大多数机器学习算法都是…...

软件测试面试题

软件测试面试时一份好简历的重要性 软件的生命周期(prdctrm) 计划阶段(planning)-〉需求分析(requirement)-〉设计阶段(design)-〉编码(coding)->测试&am…...

分治算法解决归并排序问题

分治算法定义:分治算法是一种问题解决方法,它将一个大问题划分为多个相同或相似的子问题,然后递归地解决这些子问题,最后将子问题的解合并得到原问题的解 作用: 排序算法分治算法在排序算法中得到广泛应用。例如&…...

Spring Security漏洞防护—HttpFirewall和 HTTPS

一、HttpFirewall Spring Security有几个领域,你所定义的 pattern 会针对传入的请求进行测试,以决定应该如何处理请求。这发生在 FilterChainProxy 决定请求应该通过哪个过滤链时,以及 FilterSecurityInterceptor 决定哪些安全约束适用于请求…...

Makefile泛谈

Makefile工作原理 1、检查规则中的依赖文件是否存在。 2、若依赖文件不存在,则寻找是否有规则用来生成该依赖文件。 譬如,执行文件会先寻找.o文件是否存在,如果不存在,就会再寻找是否有规则可以生成该依赖文件。如果缺少了main.…...

Python的快捷键

Python Python使用的小快招关于注释关于格式写主函数如何看函数源代码 Python使用的小快招 本文主要记录了写python代码的时候提高效率的一些小妙招 关于注释 选中要注释的代码,然后按下Ctrl /即可对多段代码注释。 关于格式 对于python代码的格式&#xff0c…...

css为盒子设置滚动条隐藏滚动条

省流:为盒子设置宽高,设置滚动条方向,隐藏滚动条。 首先,要为需要添加滚动条的盒子设置固定的高度和宽度,这样才能让内容超过盒子的边缘。 .box {width: 300px;height: 300px; }然后,给盒子加入overflow属…...

音视频开发常见问题(四):视频花屏和绿屏

摘要 本文介绍了视频视频花屏/绿屏问题的常见原因,如丢失关键帧、metadata的变化、硬件编解码的兼容性问题和颜色格式不一致问题。以及排查方法和解决策略,包括检查视频数据格式、排查自采集/自渲染模块问题、联系第三方音视频SDK技术支持等。最后&…...

设计模式—创建型模式之单例模式

设计模式—创建型模式之单例模式 介绍 单例模式说明:一个单一的类,负责创建自己的对象,同时确保系统中只有单个对象被创建。 单例模式特点: 某个类只能有一个实例;(构造器私有)它必须自行创…...

7.现代卷积神经网络

#pic_center R 1 R_1 R1​ R 2 R^2 R2 目录 知识框架No.1 深度卷积神经网络 AlexNet一、AlexNet二、D2L代码注意点三、QA No.2 使用块的网络 VGG一、VGG二、D2L代码注意点三、QA No.3 网络中的网络 NiN一、NIN二、D2L代码注意点三、QA No.4 含并行连结的网络 GoogLeNet / Incep…...

华为云AI开发平台ModelArts

华为云ModelArts:重塑AI开发流程的“智能引擎”与“创新加速器”! 在人工智能浪潮席卷全球的2025年,企业拥抱AI的意愿空前高涨,但技术门槛高、流程复杂、资源投入巨大的现实,却让许多创新构想止步于实验室。数据科学家…...

Qt/C++开发监控GB28181系统/取流协议/同时支持udp/tcp被动/tcp主动

一、前言说明 在2011版本的gb28181协议中,拉取视频流只要求udp方式,从2016开始要求新增支持tcp被动和tcp主动两种方式,udp理论上会丢包的,所以实际使用过程可能会出现画面花屏的情况,而tcp肯定不丢包,起码…...

DeepSeek 赋能智慧能源:微电网优化调度的智能革新路径

目录 一、智慧能源微电网优化调度概述1.1 智慧能源微电网概念1.2 优化调度的重要性1.3 目前面临的挑战 二、DeepSeek 技术探秘2.1 DeepSeek 技术原理2.2 DeepSeek 独特优势2.3 DeepSeek 在 AI 领域地位 三、DeepSeek 在微电网优化调度中的应用剖析3.1 数据处理与分析3.2 预测与…...

苍穹外卖--缓存菜品

1.问题说明 用户端小程序展示的菜品数据都是通过查询数据库获得,如果用户端访问量比较大,数据库访问压力随之增大 2.实现思路 通过Redis来缓存菜品数据,减少数据库查询操作。 缓存逻辑分析: ①每个分类下的菜品保持一份缓存数据…...

【android bluetooth 框架分析 04】【bt-framework 层详解 1】【BluetoothProperties介绍】

1. BluetoothProperties介绍 libsysprop/srcs/android/sysprop/BluetoothProperties.sysprop BluetoothProperties.sysprop 是 Android AOSP 中的一种 系统属性定义文件(System Property Definition File),用于声明和管理 Bluetooth 模块相…...

Cloudflare 从 Nginx 到 Pingora:性能、效率与安全的全面升级

在互联网的快速发展中,高性能、高效率和高安全性的网络服务成为了各大互联网基础设施提供商的核心追求。Cloudflare 作为全球领先的互联网安全和基础设施公司,近期做出了一个重大技术决策:弃用长期使用的 Nginx,转而采用其内部开发…...

SpringCloudGateway 自定义局部过滤器

场景: 将所有请求转化为同一路径请求(方便穿网配置)在请求头内标识原来路径,然后在将请求分发给不同服务 AllToOneGatewayFilterFactory import lombok.Getter; import lombok.Setter; import lombok.extern.slf4j.Slf4j; impor…...

DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”

目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...

【Go语言基础【12】】指针:声明、取地址、解引用

文章目录 零、概述:指针 vs. 引用(类比其他语言)一、指针基础概念二、指针声明与初始化三、指针操作符1. &:取地址(拿到内存地址)2. *:解引用(拿到值) 四、空指针&am…...

ubuntu系统文件误删(/lib/x86_64-linux-gnu/libc.so.6)修复方案 [成功解决]

报错信息:libc.so.6: cannot open shared object file: No such file or directory: #ls, ln, sudo...命令都不能用 error while loading shared libraries: libc.so.6: cannot open shared object file: No such file or directory重启后报错信息&…...