当前位置: 首页 > news >正文

Elasticsearch跨集群检索配置

跨集群检索字面意思,同一个检索语句,可以检索到多个ES集群中的数据,ES集群默认是支持跨集群检索的,只需要动态的增加入节点即可,下面跟我一起来体验下ES的跨集群检索的魅力。

Elasticsearch 跨集群检索推荐的是不同集群版本是相同的。

对于 Elasticsearch 8.1.3 版本,跨集群检索对应的 Elasticsearch 的版本信息如下,通过看图可以知道,Elasticsearch8.1 版本最多支持到 7.17 版本。

alt

图片来源:https://www.elastic.co/guide/en/elasticsearch/reference/8.1/modules-cross-cluster-search.html

跨集群检索语句等实际操作跳过环境这一节,直接跳转文章底部查看。

环境

集群一:es-docker-cluster

集群一为IP:192.168.160.245这台机器上面以docker形式部署的ES 8.1.3集群,集群名为es-docker-cluster

version: '3.8'
services:
  cerebro:
    image: lmenezes/cerebro:0.8.3
    container_name: cerebro
    ports:
     - "9000:9000"
    command:
     - -Dhosts.0.host=http://eshot:9200
    networks:
     - elastic
  kibana:
    image: docker.elastic.co/kibana/kibana:8.1.3
    container_name: kibana
    environment:
      - I18N_LOCALE=zh-CN
      - XPACK_GRAPH_ENABLED=true
      - TIMELION_ENABLED=true
      - XPACK_MONITORING_COLLECTION_ENABLED="true"
      - ELASTICSEARCH_HOSTS=http://eshot:9200
      - server.publicBaseUrl=http://192.168.160.245:5601
    ports:
      - "5601:5601"
    networks:
      - elastic
  eshot:
    image: elasticsearch:8.1.3
    container_name: eshot
    environment:
      - node.name=eshot
      - cluster.name=es-docker-cluster
      - discovery.seed_hosts=eshot,eswarm,escold
      - cluster.initial_master_nodes=eshot,eswarm,escold
      - bootstrap.memory_lock=true
      - "ES_JAVA_OPTS=-Xms512m -Xmx512m"
      - xpack.security.enabled=false
      - node.attr.node_type=hot
    ulimits:
      memlock:
        soft: -1
        hard: -1
    volumes:
      - D:\zuiyuftp\docker\es8.1\eshot\data:/usr/share/elasticsearch/data
      - D:\zuiyuftp\docker\es8.1\eshot\logs:/usr/share/elasticsearch/logs
      - D:\zuiyuftp\docker\es8.1\eshot\plugins:/usr/share/elasticsearch/plugins
    ports:
      - 9200:9200
      - 9300:9300
    networks:
      - elastic
  eswarm:
    image: elasticsearch:8.1.3
    container_name: eswarm
    environment:
      - node.name=eswarm
      - cluster.name=es-docker-cluster
      - discovery.seed_hosts=eshot,eswarm,escold
      - cluster.initial_master_nodes=eshot,eswarm,escold
      - bootstrap.memory_lock=true
      - "ES_JAVA_OPTS=-Xms512m -Xmx512m"
      - xpack.security.enabled=false
      - node.attr.node_type=warm
    ulimits:
      memlock:
        soft: -1
        hard: -1
    volumes:
      - D:\zuiyuftp\docker\es8.1\eswarm\data:/usr/share/elasticsearch/data
      - D:\zuiyuftp\docker\es8.1\eswarm\logs:/usr/share/elasticsearch/logs
      - D:\zuiyuftp\docker\es8.1\eshot\plugins:/usr/share/elasticsearch/plugins
    networks:
      - elastic
  escold:
    image: elasticsearch:8.1.3
    container_name: escold
    environment:
      - node.name=escold
      - cluster.name=es-docker-cluster
      - discovery.seed_hosts=eshot,eswarm,escold
      - cluster.initial_master_nodes=eshot,eswarm,escold
      - bootstrap.memory_lock=true
      - "ES_JAVA_OPTS=-Xms512m -Xmx512m"
      - xpack.security.enabled=false
      - node.attr.node_type=cold
    ulimits:
      memlock:
        soft: -1
        hard: -1
    volumes:
      - D:\zuiyuftp\docker\es8.1\escold\data:/usr/share/elasticsearch/data
      - D:\zuiyuftp\docker\es8.1\escold\logs:/usr/share/elasticsearch/logs
      - D:\zuiyuftp\docker\es8.1\eshot\plugins:/usr/share/elasticsearch/plugins
    networks:
      - elastic

# volumes:
#   eshotdata:
#     driver: local
#   eswarmdata:
#     driver: local
#   escolddata:
#     driver: local

networks:
  elastic:
    driver: bridge

集群二:zuiyu-application

集群二为IP:192.168.160.31机器上面部署的ES8.1.3集群,集群名称为zuiyu-application他们三个的配置分别如下

node1

cluster.name: zuiyu-application
node.name: node-1
path.data: D:\elasticsearch-8.1.3-windows-x86_64\elasticsearch-8.1.3/813/data
path.logs: D:\elasticsearch-8.1.3-windows-x86_64\elasticsearch-8.1.3/813/logs
network.host: 192.168.160.31
http.port: 9200
transport.port: 9300
cluster.initial_master_nodes: ["node-1"]
discovery.seed_hosts: ["192.168.160.31:9300", "192.168.160.31:9302","192.168.160.31:9303"]
xpack.security.enabled: false
xpack.security.enrollment.enabled: false
xpack.security.http.ssl:enabled: falsekeystore.path: certs/http.p12
xpack.security.transport.ssl:enabled: falseverification_mode: certificatekeystore.path: certs/transport.p12truststore.path: certs/transport.p12

node2

cluster.name: zuiyu-application
node.name: node-2
path.data: D:\elasticsearch-8.1.3-windows-x86_64\node2/813/data
path.logs: D:\elasticsearch-8.1.3-windows-x86_64\node2/813/logs
network.host: 192.168.160.31
http.port: 9202
transport.port: 9302
cluster.initial_master_nodes: [node-2"]
discovery.seed_hosts: ["192.168.160.31:9300", "192.168.160.31:9302","192.168.160.31:9303"]
xpack.security.enabled: false
xpack.security.enrollment.enabled: false
xpack.security.http.ssl:enabled: falsekeystore.path: certs/http.p12
xpack.security.transport.ssl:enabled: falseverification_mode: certificatekeystore.path: certs/transport.p12truststore.path: certs/transport.p12

node3

cluster.name: zuiyu-application
node.name: node-3
path.data: D:\elasticsearch-8.1.3-windows-x86_64\node3/813/data
path.logs: D:\elasticsearch-8.1.3-windows-x86_64\node3/813/logs
network.host: 192.168.160.31
http.port: 9203
transport.port: 9303
cluster.initial_master_nodes: ["node-3"]
discovery.seed_hosts: ["192.168.160.31:9300", "192.168.160.31:9302","192.168.160.31:9303"]
xpack.security.enabled: false
xpack.security.enrollment.enabled: false
xpack.security.http.ssl:enabled: falsekeystore.path: certs/http.p12
xpack.security.transport.ssl:enabled: falseverification_mode: certificatekeystore.path: certs/transport.p12truststore.path: certs/transport.p12

现在环境已经搭建好了,下面 进入实验环节,首先打开集群es-docker-cluster所对应的kibana

Kibana 自行安装

跨集群检索

  • 先对集群 es-docker-cluster设置跨集群检索的集群信息

    PUT _cluster/settings
    {"persistent": {"cluster": {"remote": {"zuiyu-application": {"seeds": ["192.168.160.31:9300"]}}}}
    }

    其中zuiyu-application 为自定义的跨集群检索的名称

  • 在当前集群es-docker-cluster 中插入一条数据

    POST zfc-doc-000011/_doc/1
    {"name":"zuiyu","content":"test cluster doc 1"
    }
    
  • 打开集群 zuiyu-application对应的Kibana,同样进行增加一条数据,使他们的 name 的值都是 zuiyu

    # 集群 zuiyu-application 中插入
    POST zfc-doc-000011/_doc/1
    {"name":"zuiyu","content":"test cluster doc 2,this doc in cluster zuiyu-application"
    }
    

    到这,基础的测试数据已经完成,开始跨集群检索

  • 指定集群进行检索

    GET /集群名:索引名/_search

    GET /zuiyu-application:zfc-doc-000011/_search
    {"query": {"term": {"name": "zuiyu"}},"_source": ["name", "content"]
    }
    

    响应结果如下,可以看到已经在集群 zuiyu-application中查询出来数据了

alt
  • 跨集群检索

    同时检索es-docker-clusterzuiyu-application两个集群中索引为zfc-doc-000011中的内容

    GET zfc-doc-000011,zuiyu-application:zfc-doc-000011/_search
    {"query": {"term": {"name": "zuiyu"}},"_source": ["name", "content"]
    }
    

    响应结果如下

alt

因为我们是在 es-docker-cluster集群对应的Kibana中执行的,所以本集群的名称可以不用指定。如果想查询多个索引,只需要追加集群名:索引名即可。

基础的跨集群配置与检索就到此, 实际的使用中查询语句的条件等各个方法都会有限制,这个需要根据实际使用场景来进行修改了,反正现在怎么操作你会了,比着葫芦画瓢还不简单吗。

集群不可用时的处理

默认情况下,如果请求的远程集群返回错误或者不可用,跨集群检索将失败。此时我们可以使用 skip_unavailable ,设置该参数为 true,可以在远程集群不可用时跳过该集群。

修改语句如下,该语句设置将在集群 zuiyu-application 不可用时跳过该集群。

PUT _cluster/settings
{"persistent": {"cluster.remote.zuiyu-application.skip_unavailable": false}
}

处理网络延迟的方式

  • 最小化网络往返次数

    默认情况下,Elasticsearch 会减少与远程集群之间的网络往返次数。这就减少了网络延迟对搜索速度的影响。但是Elasticsearch 无法减少大型检索请求的网络往返次数,例如包含 scroll 或者 inner_hits 的请求。 ccs_minimize_roundtrips 的值为 true 时来使用此选项。

  • 不要最小化网络往返次数

    对于 scroll 或者 inner_hits 的请求,Elasticsearch 会向每个远程集群发送多个传入传出请求。我们可以通过修改 ccs_minimize_roundtrips 的值为 false 来使用此选项。虽然说速度会较慢,但是对于低延迟网络还是很适用的。

    对于该参数ccs_minimize_roundtrips 不了解的可以参考这篇文章

    枯燥无味的Elasticsearch检索参数字典

    打不开的复制链接地址到浏览器打开即可: https://mp.weixin.qq.com/s/DC_2sv5icjR63wZ6XmK6MA

最小化网络往返次数

图片来自官网,可点击左下角原文链接

1、向本地集群中发送跨集群检索请求,该集群中的协调节点接收并解析请求。

alt

2、协调节点向每个集群包括本地集群发送单个搜索请求。每个集群独立执行搜索请求。

alt

3、每个远程集群响应检索结果给协调节点。

alt

4、从每个集群收集结果之后,协调节点在跨集群检索请求响应中返回最终的结果。

alt

不使用最小化网络往返次数

图片来自官网,可点击左下角原文链接

1、向本地集群中发送跨集群检索请求,该集群中的协调节点接收并解析请求。

alt

2、协调节点向每个集群发送分片检索请求。

alt

3、每个远程集群将其响应发送回协调节点。此响应包含跨集群检索请求将在其集群上执行的索引和分片的信息。

alt

4、协调节点向每个分片发送检索请求,包括自己本身集群的分片。每个分片独立执行检索请求。

当网络的往返没有最小化时,因为会发送所有的分片进行检索,所以搜索的结果就好比全在协调节点中保存中一样。所以我们可以修改集群的检索设置,比如action.search.shard_count.limit, pre_filter_shard_size, max_concurrent_shard_requests,如果这些限制太低的话,检索请求可能会被直接拒绝。

对于该参数不了解的可以参考这篇文章

枯燥无味的Elasticsearch检索参数字典

打不开的复制链接地址到浏览器打开即可: https://mp.weixin.qq.com/s/DC_2sv5icjR63wZ6XmK6MA

alt

5、每个分片将检索结果返回给协调节点。

alt

6、协调节点收集所有的结果后,在跨集群检索请求响应中返回最终的响应结果。

alt

Kibana 中远程集群查看

创建完成之后的远程集群可以在Kibana中查看

alt

本文由 mdnice 多平台发布

相关文章:

Elasticsearch跨集群检索配置

跨集群检索字面意思,同一个检索语句,可以检索到多个ES集群中的数据,ES集群默认是支持跨集群检索的,只需要动态的增加入节点即可,下面跟我一起来体验下ES的跨集群检索的魅力。 Elasticsearch 跨集群检索推荐的是不同集群…...

第九章 软件BUG和管理

一、学习目的与要求 软件测试的目的就是为了发现软件BUG。通过本章的学习,应了解软件BUG的产生和影响,掌握软件开发过程中产生的BUG种类,掌握使BUG重现的技术,了解软件BUG报告单应该包括的主要内容及软件BUG的管理流程。 二、考核…...

大厂面试题-Java并发编程基础篇(二)

目录 一、wait和notify这个为什么要在synchronized代码块中? 二、ThreadLocal是什么?它的实现原理呢? 三、基于数组的阻塞队列ArrayBlockingQueue原理 四、怎么理解线程安全? 五、请简述一下伪共享的概念以及如何避免 六、什…...

测绘屠夫报表系统V1.0.0-beta

1. 简介 测绘屠夫报表系统,能够根据变形监测数据:水准、平面、轴力、倾斜等数据,生成对应的报表,生成报表如下图。如需进一步了解,可以加QQ:3339745885。视频教程可以在bilibili观看。 2. 软件主界面 3. …...

『力扣刷题本』:移除链表元素

一、题目 给你一个链表的头节点 head 和一个整数 val ,请你删除链表中所有满足 Node.val val 的节点,并返回 新的头节点 。 示例 1: 输入:head [1,2,6,3,4,5,6], val 6 输出:[1,2,3,4,5]示例 2: 输入&a…...

图像特征Vol.1:计算机视觉特征度量|第一弹:【纹理区域特征】

目录 一、前言二、纹理区域度量2.1:边缘特征度量2.2:互相关和自相关特征2.3:频谱方法—傅里叶谱2.4:灰度共生矩阵(GLCM)2.5:Laws纹理特征2.6:局部二值模式(LBP) 一、前言 &#x1f…...

day01:数据库DDL

一:基础概念 数据库:存储数据的仓库,数据是有组织的进行存储 数据库管理系统:操纵和管理数据库的大型软件 SQL:操作关系型数据库的编程语言,定义了一套操作关系型数据库统一标准 关系图 二:数据模型 关系型数据库:建…...

9、定义错误页

在layouts目录下新建error.vue&#xff0c;可以通过layout函数使用布局文件&#xff0c;通过props: [“error”]能拿到错误信息对象。 <template><div>{{ error.statusCode }}: {{ error.message }}</div> </template><script> export default {…...

有关多线程环境下的Volatile、lock、Interlocked和Synchronized们

&#x1f4e2;欢迎点赞 &#xff1a;&#x1f44d; 收藏 ⭐留言 &#x1f4dd; 如有错误敬请指正&#xff0c;赐人玫瑰&#xff0c;手留余香&#xff01;&#x1f4e2;本文作者&#xff1a;由webmote 原创&#x1f4e2;作者格言&#xff1a;新的征程&#xff0c;我们面对的不仅…...

spring boot利用redis作为缓存

一、缓存介绍 在 Spring Boot 中&#xff0c;可以使用 Spring Cache abstraction 来实现缓存功能。Spring Cache abstraction 是 Spring 框架提供的一个抽象层&#xff0c;它对底层缓存实现&#xff08;如 Redis、Ehcache、Caffeine 等&#xff09;进行了封装&#xff0c;使得在…...

Android Studio 查看Framework源码

1、背景 安卓系统源码量很庞大&#xff0c;选择好的开发工具和方式去开发可以提升开发效率&#xff0c;常用的开发工具有Source Insight 、Visual Studio Code、Android Studio&#xff0c;vscode适合C和C代码开发&#xff0c;java层代码无法跳转和提示&#xff0c;因此&#…...

FileInputStream文件字节输入流

一.概念 以内存为基准&#xff0c;把磁盘文件中的数据以字节形式读入内存中 二.构造器 public FileInputStream(File file) public FileInputStream(String pathname) 这两个都是创建字节输入流管道与源文件接通 三.方法 public int read() :每次读取一个字节返回&#xff0c;如…...

【Qt】窗口和对话框区别、主窗口和二级窗口区别、QMainWindow和QDialog区别

窗口和对话框&#xff08;Window and Dialog Widgets&#xff09; 未嵌入在父界面中的界面称为窗口。&#xff08;通常&#xff0c;窗口具有边框和标题栏&#xff0c;尽管也可以使用合适的窗口标志创建没有此类标志的窗口&#xff09;。 在Qt中&#xff0c;QMainWindow和QDial…...

Python参数种类介绍

Python参数种类介绍 相比于一些其他编程语言&#xff0c;Python提供了更多的参数种类选项。这是Python的一大特点&#xff0c;使用不同的参数类型&#xff0c;可以提高函数的可读性和可维护性。例如&#xff0c;使用关键字参数可以使函数调用更加清晰&#xff0c;不需要记住参数…...

react事件机制

React 事件机制 React的事件机制是React框架中非常重要的一部分&#xff0c;用于处理用户交互和用户界面上的事件。React的事件机制在底层使用了虚拟DOM以及合成事件来提高性能和跨浏览器兼容性。以下是关于React事件机制的详细信息&#xff1a; 合成事件&#xff08;Syntheti…...

JAVA删除excel指定列

首先POI没有提供删除列的API&#xff0c;所以就需要用其他的方式实现。 在 java - Apache POI xls column Remove - Stack Overflow 这里找到了实现方式&#xff1a; 先将该列所有值都清空&#xff0c;然后将该列之后的所有列往前移动。 下面的工具类中 deleteColumns(Inpu…...

Netty编码器和解码器

文章目录 一、Decoder原理与实践1、ByteToMessageDecoder解码器2、自定义整数解码器1&#xff09;常规方式2&#xff09;ReplayingDecoder解码器 3、分包解码器3、MessageToMessageDecoder解码器 二、Netty内置的Decoder1、LineBasedFrameDecoder解码器2、DelimiterBasedFrameD…...

大语言模型(LLM)综述(三):大语言模型预训练的进展

A Survey of Large Language Models 前言4. PRE-TRAINING4.1数据收集4.1.1 数据源4.1.2 数据预处理4.1.3 预训练数据对LLM的影响 4.2 模型架构4.2.1 典型架构4.2.2 详细配置4.2.3 预训练任务4.2.4 解码策略4.2.5 总结和讨论 4.3 模型训练4.3.1 优化设置4.3.2 可扩展的训练技术 …...

如何在Node.js中使用环境变量或命令行参数来设置HTTP爬虫ip?

首先&#xff0c;定义问题&#xff1a;在 Node.js 应用程序中&#xff0c;我们可以通过环境变量或命令行参数来设置HTTP爬虫ip&#xff0c;以便在发送请求时使用这些HTTP爬虫ip。 亲身经验&#xff1a;我曾经需要为一个项目设置HTTP爬虫ip&#xff0c;以便在发送请求时使用这些…...

VMware打开共享虚拟机后找不到/mnt/hgfs/文件夹,以及不能拖拽/复制粘贴等操作,ubuntu不能安装VMware tools

问题原因 我的问题出现原因是&#xff0c;安装ubuntn虚拟机的时候VMware tools没有安装好&#xff0c;需要重新安装&#xff0c;但安装选项是暗的&#xff0c;不能操作。 类似这种情况&#xff0c;虚拟机开启时也是&#xff0c;因为我虚拟机已经装好了&#xff0c;开启时是亮…...

多模态2025:技术路线“神仙打架”,视频生成冲上云霄

文&#xff5c;魏琳华 编&#xff5c;王一粟 一场大会&#xff0c;聚集了中国多模态大模型的“半壁江山”。 智源大会2025为期两天的论坛中&#xff0c;汇集了学界、创业公司和大厂等三方的热门选手&#xff0c;关于多模态的集中讨论达到了前所未有的热度。其中&#xff0c;…...

8k长序列建模,蛋白质语言模型Prot42仅利用目标蛋白序列即可生成高亲和力结合剂

蛋白质结合剂&#xff08;如抗体、抑制肽&#xff09;在疾病诊断、成像分析及靶向药物递送等关键场景中发挥着不可替代的作用。传统上&#xff0c;高特异性蛋白质结合剂的开发高度依赖噬菌体展示、定向进化等实验技术&#xff0c;但这类方法普遍面临资源消耗巨大、研发周期冗长…...

uni-app学习笔记二十二---使用vite.config.js全局导入常用依赖

在前面的练习中&#xff0c;每个页面需要使用ref&#xff0c;onShow等生命周期钩子函数时都需要像下面这样导入 import {onMounted, ref} from "vue" 如果不想每个页面都导入&#xff0c;需要使用node.js命令npm安装unplugin-auto-import npm install unplugin-au…...

Linux云原生安全:零信任架构与机密计算

Linux云原生安全&#xff1a;零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言&#xff1a;云原生安全的范式革命 随着云原生技术的普及&#xff0c;安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测&#xff0c;到2025年&#xff0c;零信任架构将成为超…...

深度学习习题2

1.如果增加神经网络的宽度&#xff0c;精确度会增加到一个特定阈值后&#xff0c;便开始降低。造成这一现象的可能原因是什么&#xff1f; A、即使增加卷积核的数量&#xff0c;只有少部分的核会被用作预测 B、当卷积核数量增加时&#xff0c;神经网络的预测能力会降低 C、当卷…...

LINUX 69 FTP 客服管理系统 man 5 /etc/vsftpd/vsftpd.conf

FTP 客服管理系统 实现kefu123登录&#xff0c;不允许匿名访问&#xff0c;kefu只能访问/data/kefu目录&#xff0c;不能查看其他目录 创建账号密码 useradd kefu echo 123|passwd -stdin kefu [rootcode caozx26420]# echo 123|passwd --stdin kefu 更改用户 kefu 的密码…...

【 java 虚拟机知识 第一篇 】

目录 1.内存模型 1.1.JVM内存模型的介绍 1.2.堆和栈的区别 1.3.栈的存储细节 1.4.堆的部分 1.5.程序计数器的作用 1.6.方法区的内容 1.7.字符串池 1.8.引用类型 1.9.内存泄漏与内存溢出 1.10.会出现内存溢出的结构 1.内存模型 1.1.JVM内存模型的介绍 内存模型主要分…...

上位机开发过程中的设计模式体会(1):工厂方法模式、单例模式和生成器模式

简介 在我的 QT/C 开发工作中&#xff0c;合理运用设计模式极大地提高了代码的可维护性和可扩展性。本文将分享我在实际项目中应用的三种创造型模式&#xff1a;工厂方法模式、单例模式和生成器模式。 1. 工厂模式 (Factory Pattern) 应用场景 在我的 QT 项目中曾经有一个需…...

6个月Python学习计划 Day 16 - 面向对象编程(OOP)基础

第三周 Day 3 &#x1f3af; 今日目标 理解类&#xff08;class&#xff09;和对象&#xff08;object&#xff09;的关系学会定义类的属性、方法和构造函数&#xff08;init&#xff09;掌握对象的创建与使用初识封装、继承和多态的基本概念&#xff08;预告&#xff09; &a…...

leetcode_69.x的平方根

题目如下 &#xff1a; 看到题 &#xff0c;我们最原始的想法就是暴力解决: for(long long i 0;i<INT_MAX;i){if(i*ix){return i;}else if((i*i>x)&&((i-1)*(i-1)<x)){return i-1;}}我们直接开始遍历&#xff0c;我们是整数的平方根&#xff0c;所以我们分两…...