当前位置: 首页 > news >正文

【pytorch】pytorch中的高级索引

这里只介绍pytorch的高级索引,是一些奇怪的切片索引

基本版

a[[0, 2], [1, 2]] 等价 a[0, 1] 和 a[2, 2],相当于索引张量的第一行的第二列和第三行的第三列元素;
a[[1, 0, 2], [0]] 等价 a[1, 0] 和 a[0, 0] 和 a[2, 0],相当于索引张量的第二行第一列的元素、张量第一行和第一列的元素以及张量第三行和第一列的元素

import torch
a = torch.arange(9).view([3, 3])print(a)
b = a[[0, 2], [1, 2]]print(b)c = a[[1, 0, 2], [0]]print(c)# ---------output----------
# tensor([[0, 1, 2],
#         [3, 4, 5],
#         [6, 7, 8]])
# tensor([1, 8])
# tensor([3, 0, 6])# 这里参考了:https://zhuanlan.zhihu.com/p/509591863

高级索引的原则:索引中有: 就代表着改维度全部取,在哪个维度放置索引,就代表想取哪个维度的内容

扩展A:

import torch
a = torch.arange(30).view([2, 5, 3])  # 假如a代表N, x, y
print(a)b = torch.tensor([[0, 2],[1, 2]])
print(a[:, b[0, :], :])# ------output-------
# tensor([[[ 0,  1,  2],
#          [ 3,  4,  5],
#          [ 6,  7,  8],
#          [ 9, 10, 11],
#          [12, 13, 14]],
#
#         [[15, 16, 17],
#          [18, 19, 20],
#          [21, 22, 23],
#          [24, 25, 26],
#          [27, 28, 29]]])
# tensor([[[ 0,  1,  2],
#          [ 6,  7,  8]],
#
#         [[15, 16, 17],
#          [21, 22, 23]]])# 上述代码含义是对a的所有N, 按b中的第一行取出所有的行

扩展B:

a = torch.arange(30).view([2, 5, 3])
print(a)b = torch.tensor([[0, 2],[1, 2]])
print(a[:, b[:, 0], b[:, 1]])# ----------output--------------
# tensor([[[ 0,  1,  2],
#          [ 3,  4,  5],
#          [ 6,  7,  8],
#          [ 9, 10, 11],
#          [12, 13, 14]],
# 
#         [[15, 16, 17],
#          [18, 19, 20],
#          [21, 22, 23],
#          [24, 25, 26],
#          [27, 28, 29]]])
# tensor([[ 2,  5],
#         [17, 20]])# 上述代码含义是对a的所有batch, 按b中的元素取出a中的x, y; 取N次

扩展C: (最抽象的一次)


a = torch.arange(30).view([2, 5, 3])
print(a)b = torch.tensor([[0, 2],[1, 2]])
print(a[:, b, :])# ------output-------
# tensor([[[ 0,  1,  2],
#          [ 3,  4,  5],
#          [ 6,  7,  8],
#          [ 9, 10, 11],
#          [12, 13, 14]],
# 
#         [[15, 16, 17],
#          [18, 19, 20],
#          [21, 22, 23],
#          [24, 25, 26],
#          [27, 28, 29]]])
# tensor([[[[ 0,  1,  2],
#           [ 6,  7,  8]],
# 
#          [[ 3,  4,  5],
#           [ 6,  7,  8]]],
# 
# 
#         [[[15, 16, 17],
#           [21, 22, 23]],
# 
#          [[18, 19, 20],
#           [21, 22, 23]]]])# 上述代码含义是对a的所有batch, 按b中的元素取出a中行; 取N * b[0]次

torch.gather函数

本来想使用torch.gather函数完成上述功能,实验后发现并不直观,还是用高级索引吧。这里放个torch.gather函数单独的内容吧。

import torchtensor_0 = torch.arange(3, 12).view(3, 3)
print(tensor_0)index = torch.tensor([[2, 1, 0]])
tensor_1 = tensor_0.gather(0, index)
print(tensor_1)index = torch.tensor([[2, 1, 0]])
tensor_1 = tensor_0.gather(1, index)
print(tensor_1)#-------------output------------
# tensor([[ 3,  4,  5],
#         [ 6,  7,  8],
#         [ 9, 10, 11]])
# tensor([[9, 7, 5]])
# tensor([[5, 4, 3]])# torch.gather的理解
# index=[ [x1,x2,x2],
# [y1,y2,y2],
# [z1,z2,z3] ]
# 
# 如果dim=0
# 填入方式
# [ [(x1,0),(x2,1),(x3,2)]
# [(y1,0),(y2,1),(y3,2)]
# [(z1,0),(z2,1),(z3,2)] ]
#
# 如果dim=1
# [ [(0,x1),(0,x2),(0,x3)]
# [(1,y1),(1,y2),(1,y3)]
# [(2,z1),(2,z2),(2,z3)] ]# 参考: https://zhuanlan.zhihu.com/p/352877584

相关文章:

【pytorch】pytorch中的高级索引

这里只介绍pytorch的高级索引,是一些奇怪的切片索引 基本版 a[[0, 2], [1, 2]] 等价 a[0, 1] 和 a[2, 2],相当于索引张量的第一行的第二列和第三行的第三列元素; a[[1, 0, 2], [0]] 等价 a[1, 0] 和 a[0, 0] 和 a[2, 0],相当于索…...

基于图像识别的自动驾驶汽车障碍物检测与避障算法研究

基于图像识别的自动驾驶汽车障碍物检测与避障算法研究是一个涉及计算机视觉、机器学习、人工智能和自动控制等多个领域的复杂问题。以下是对这个问题的研究内容和方向的一些概述。 障碍物检测 障碍物检测是自动驾驶汽车避障算法的核心部分,它需要从车辆的感知数据…...

Spring boot定时任务

目录 前言一、使用 Scheduled 注解二、使用 ScheduledExecutorService三、使用 Spring 的 TaskScheduler四、使用第三方调度框架 前言 在 Spring Boot 中,有多种方法来编写定时任务,以执行周期性或延迟执行的任务。下面是几种常见的方式 一、使用 Sche…...

Glide原理

本文基于Carson整理 1.简介 相比其他几种图片加载框架,Glide性能最好。这得益于其高效的图片缓存策略 其还有多样化的媒体格式加载:如GIF、Video,对于商城首页需展示丰富样式、信息的页面需求来说,也是必不可少的。 2.加载原理…...

wps表格按分隔符拆分单元格

有数据如下;看选中区域,一个单元格中有一个v,空格,然后有三个数值,以空格分开;点击菜单中的数据-分列; 弹出分列向导;选择 分隔符号; 选择分隔符为空格;出现预…...

【SEC 学习】Vim 的基本使用

一、Vim 编辑器安装 yum install -y vim二、Vim 三种模式 命令模式 编辑模式 末行模式 三、三种模式之间的转换 1. 命令模式 -> 编辑模式 快捷键含义i从光标处插入I从光标所在行首插入a从光标后插入A从光标所在行末插入o从光标下一行插入O从光标上一行插入 2. 命令模式 …...

Linux中shell脚本练习

目录 1.猜数字 2.批量创建用户 3.监控网卡Receive Transmit 数据的变化 4.部署Linux 5.系统性能检测脚本 6.分区脚本 7.数据库脚本 1.猜数字 随机数的生成 使用环境变量RANDOM,范围是0~32767 编写guest.sh,实现以下功能&#xff1…...

AS/400简介

AS400 AS400 简介AS/400操作系统演示 AS400 简介 在 AS400 中,AS代表“应用系统”。它是多用户、多任务和非常安全的系统,因此用于需要同时存储和处理敏感数据的行业。它最适合中级行业,因此用于制药行业、银行、商场、医院管理、制造业、分销…...

FreeRTOS 中断管理介绍和实操

目录 中断定义 中断优先级 相关注意 中断相关函数 1.队列 2.信号量 3.事件标志组 4.任务通知 5.软件定时器 中断管理实操 中断定义 中断是指在程序执行的过程中,突然发生了某种事件,需要立即停止当前正在执行的程序,并转而处理这个…...

性能测试 —— Jmeter 常用三种定时器!

1、同步定时器 位置:HTTP请求->定时器->Synchronizing Timer 当需要进行大量用户的并发测试时,为了让用户能真正的同时执行,添加同步定时器,用户阻塞线程,知道线程数达到预先配置的数值,才开始执行…...

ROS自学笔记十七:Arbotix

ArbotiX 是一个基于 ROS(Robot Operating System)的机器人控制系统,它旨在为小型机器人提供硬件控制和传感器接口,以便于机器人的运动和感知。以下是有关 ROS 中 ArbotiX 的简介和安装步骤: ArbotiX 简介 ArbotiX 主…...

Mac电脑窗口管理Magnet中文 for mac

Magnet是一款Mac窗口管理工具,它可以帮助用户轻松管理打开的窗口,提高多任务处理效率。以下是Magnet的一些主要特点和功能: 分屏模式支持:Magnet支持多种分屏模式,包括左/右/顶部/底部 1/2 分屏、左/中/右 1/3 分屏、…...

Centos7 部署 Stable Diffusion

参考:https://www.jianshu.com/p/ff81bb76158a 遇到的问题: 1、git clone 比较慢 解决办法:设置代理 https://blog.csdn.net/dszgf5717/article/details/130735389 2、pip install 比较慢 解决办法:更换源或设置代理 https:/…...

【Python】一个句子中也许有多个连续空格,过滤掉多余的空格,只留下一个空格

题目要求:一个句子中也许有多个连续空格,过滤掉多余的空格,只留下一个空格 例:(为了方便观看,以 ▢ 代替空格) 输入:123▢▢abc▢▢▢python 输出:123▢abc▢python 参考…...

嵌入式项目电灯

1、原理,电灯有个正负极,当正确接入电源正负极就能点亮(如正极5v,负极0v),单两边同时接入正极,就不会亮(两端都是5v),所以通过控制电平,来实现控制led等的亮暗 cpu通过给…...

[ubuntu系统下的文本编辑器nano,vim,gedit,文件使用,以及版本更新问题]

文本编辑器概要 在Ubuntu系统下,有许多文本编辑器可供选择,每个编辑器都有其独特的特性和用途。以下是一些常见的文本编辑器: Gedit: 这是Ubuntu默认的文本编辑器,它简单易用,适合基本的文本编辑任务。 安…...

C#WinformListView实现缺陷图片浏览器

C#&Winform&ListView实现缺陷图片浏览器 功能需求图像浏览行间距调整悬浮提示 功能需求 机器视觉检测系统中特别是缺陷检测系统,通常需要进行对已经检出的缺陷图片进行浏览查阅。主要是通过条件筛选查询出所需要的数据,进行分页再展示到界面中。…...

C- qsort()

qsort() 是 C 语言标准库中的一个函数,用于进行数组的排序。其名字“qsort”代表“快速排序”(Quick Sort),这是因为它通常使用快速排序算法进行排序,但具体实现可能因库而异。 以下是 qsort() 的详细介绍&#xff1a…...

【Apache Flink】基于时间和窗口的算子-配置时间特性

文章目录 前言配置时间特性将时间特性设置为事件时间时间戳分配器周期性水位线分配器创建一个实现AssignerWithPeriodicWatermarks接口的类,目的是为了周期性生成watermark 定点水位线分配器示例 参考文档 前言 Apache Flink 它提供了多种类型的时间和窗口概念&…...

数组的优点和缺点

数组的优点和缺点: 优点: 随机访问:数组支持常量时间的随机访问,即通过索引可以直接访问元素。这使得数组在查找特定元素时非常高效。内存连续性:数组的元素在内存中是连续存储的,这可以减少缓存未命中的…...

IDEA运行Tomcat出现乱码问题解决汇总

最近正值期末周,有很多同学在写期末Java web作业时,运行tomcat出现乱码问题,经过多次解决与研究,我做了如下整理: 原因: IDEA本身编码与tomcat的编码与Windows编码不同导致,Windows 系统控制台…...

Python爬虫实战:研究MechanicalSoup库相关技术

一、MechanicalSoup 库概述 1.1 库简介 MechanicalSoup 是一个 Python 库,专为自动化交互网站而设计。它结合了 requests 的 HTTP 请求能力和 BeautifulSoup 的 HTML 解析能力,提供了直观的 API,让我们可以像人类用户一样浏览网页、填写表单和提交请求。 1.2 主要功能特点…...

测试微信模版消息推送

进入“开发接口管理”--“公众平台测试账号”,无需申请公众账号、可在测试账号中体验并测试微信公众平台所有高级接口。 获取access_token: 自定义模版消息: 关注测试号:扫二维码关注测试号。 发送模版消息: import requests da…...

Spring Boot 实现流式响应(兼容 2.7.x)

在实际开发中,我们可能会遇到一些流式数据处理的场景,比如接收来自上游接口的 Server-Sent Events(SSE) 或 流式 JSON 内容,并将其原样中转给前端页面或客户端。这种情况下,传统的 RestTemplate 缓存机制会…...

Spring Boot面试题精选汇总

🤟致敬读者 🟩感谢阅读🟦笑口常开🟪生日快乐⬛早点睡觉 📘博主相关 🟧博主信息🟨博客首页🟫专栏推荐🟥活动信息 文章目录 Spring Boot面试题精选汇总⚙️ **一、核心概…...

【论文阅读28】-CNN-BiLSTM-Attention-(2024)

本文把滑坡位移序列拆开、筛优质因子,再用 CNN-BiLSTM-Attention 来动态预测每个子序列,最后重构出总位移,预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵(S…...

NPOI Excel用OLE对象的形式插入文件附件以及插入图片

static void Main(string[] args) {XlsWithObjData();Console.WriteLine("输出完成"); }static void XlsWithObjData() {// 创建工作簿和单元格,只有HSSFWorkbook,XSSFWorkbook不可以HSSFWorkbook workbook new HSSFWorkbook();HSSFSheet sheet (HSSFSheet)workboo…...

WPF八大法则:告别模态窗口卡顿

⚙️ 核心问题:阻塞式模态窗口的缺陷 原始代码中ShowDialog()会阻塞UI线程,导致后续逻辑无法执行: var result modalWindow.ShowDialog(); // 线程阻塞 ProcessResult(result); // 必须等待窗口关闭根本问题&#xff1a…...

【SpringBoot自动化部署】

SpringBoot自动化部署方法 使用Jenkins进行持续集成与部署 Jenkins是最常用的自动化部署工具之一,能够实现代码拉取、构建、测试和部署的全流程自动化。 配置Jenkins任务时,需要添加Git仓库地址和凭证,设置构建触发器(如GitHub…...

深度剖析 DeepSeek 开源模型部署与应用:策略、权衡与未来走向

在人工智能技术呈指数级发展的当下,大模型已然成为推动各行业变革的核心驱动力。DeepSeek 开源模型以其卓越的性能和灵活的开源特性,吸引了众多企业与开发者的目光。如何高效且合理地部署与运用 DeepSeek 模型,成为释放其巨大潜力的关键所在&…...