当前位置: 首页 > news >正文

分类预测 | MATLAB实现SSA-CNN-BiGRU麻雀算法优化卷积双向门控循环单元数据分类预测

分类预测 | MATLAB实现SSA-CNN-BiGRU麻雀算法优化卷积双向门控循环单元数据分类预测

目录

    • 分类预测 | MATLAB实现SSA-CNN-BiGRU麻雀算法优化卷积双向门控循环单元数据分类预测
      • 分类效果
      • 基本描述
      • 程序设计
      • 参考资料

分类效果

1
2
3
4

5
6

基本描述

1.MATLAB实现SSA-CNN-BiGRU麻雀算法优化卷积双向门控循环单元数据分类预测,运行环境Matlab2021b及以上;
2.基于麻雀优化算法(SSA)、卷积神经网络(CNN)和双向门控循环单元(BiGRU)的数据分类预测程序;
3.多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用;SSA优化算法优化学习率,隐藏层节点,正则化系数,这3个关键参数。
程序语言为matlab,程序可出分类效果图,混淆矩阵图。
4.data为数据集,输入12个特征,分四类;main为主程序,其余为函数文件,无需运行。
5.适用领域:适用于各种数据分类场景,如滚动轴承故障、变压器油气故障、电力系统输电线路故障区域、绝缘子、配网、电能质量扰动,等领域的识别、诊断和分类。
使用便捷:直接使用EXCEL表格导入数据,无需大幅修改程序。内部有详细注释,易于理解。

程序设计

  • 完整程序和数据获取方式:私信博主回复MATLAB实现SSA-CNN-BiGRU麻雀算法优化卷积双向门控循环单元数据分类预测
%%  优化算法参数设置
SearchAgents_no = 8;                   % 数量
Max_iteration = 5;                    % 最大迭代次数
dim = 3;                               % 优化参数个数
lb = [1e-3,10 1e-4];                 % 参数取值下界(学习率,隐藏层节点,正则化系数)
ub = [1e-2, 30,1e-1];                 % 参数取值上界(学习率,隐藏层节点,正则化系数)fitness = @(x)fical(x,num_dim,num_class,p_train,t_train,T_train);[Best_score,Best_pos,curve]=SSA(SearchAgents_no,Max_iteration,lb ,ub,dim,fitness)
Best_pos(1, 2) = round(Best_pos(1, 2));   
best_hd  = Best_pos(1, 2); % 最佳隐藏层节点数
best_lr= Best_pos(1, 1);% 最佳初始学习率
best_l2 = Best_pos(1, 3);% 最佳L2正则化系数%% 建立模型
lgraph = layerGraph();                                                   % 建立空白网络结构
tempLayers = [sequenceInputLayer([num_dim, 1, 1], "Name", "sequence")              % 建立输入层,输入数据结构为[num_dim, 1, 1]sequenceFoldingLayer("Name", "seqfold")];                            % 建立序列折叠层
lgraph = addLayers(lgraph, tempLayers);                                  % 将上述网络结构加入空白结构中
tempLayers = [convolution2dLayer([3, 1], 16, "Name", "conv_1", "Padding", "same")  % 建立卷积层,卷积核大小[3, 1]16个特征图reluLayer("Name", "relu_1")                                          % Relu 激活层lgraph = addLayers(lgraph, tempLayers);                                  % 将上述网络结构加入空白结构中tempLayers = [sequenceUnfoldingLayer("Name", "sequnfold")                      % 建立序列反折叠层flattenLayer("Name", "flatten")                                  fullyConnectedLayer(num_class, "Name", "fc")                     % 全连接层softmaxLayer("Name", "softmax")                                  % softmax激活层classificationLayer("Name", "classification")];                  % 分类层
lgraph = addLayers(lgraph, tempLayers);                              % 将上述网络结构加入空白结构中
lgraph = connectLayers(lgraph, "seqfold/out", "conv_1");             % 折叠层输出 连接 卷积层输入
lgraph = connectLayers(lgraph, "seqfold/miniBatchSize", "sequnfold/miniBatchSize"); %% 参数设置
options = trainingOptions('adam', ...     % Adam 梯度下降算法'MaxEpochs', 500,...                 % 最大训练次数 'InitialLearnRate', best_lr,...          % 初始学习率为0.001'L2Regularization', best_l2,...         % L2正则化参数'LearnRateSchedule', 'piecewise',...  % 学习率下降'LearnRateDropFactor', 0.1,...        % 学习率下降因子 0.1'LearnRateDropPeriod', 400,...        % 经过训练后 学习率为 0.001*0.1'Shuffle', 'every-epoch',...          % 每次训练打乱数据集'ValidationPatience', Inf,...         % 关闭验证'Plots', 'training-progress',...      % 画出曲线'Verbose', false);%% 训练
net = trainNetwork(p_train, t_train, lgraph, options);

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229

相关文章:

分类预测 | MATLAB实现SSA-CNN-BiGRU麻雀算法优化卷积双向门控循环单元数据分类预测

分类预测 | MATLAB实现SSA-CNN-BiGRU麻雀算法优化卷积双向门控循环单元数据分类预测 目录 分类预测 | MATLAB实现SSA-CNN-BiGRU麻雀算法优化卷积双向门控循环单元数据分类预测分类效果基本描述程序设计参考资料 分类效果 基本描述 1.MATLAB实现SSA-CNN-BiGRU麻雀算法优化卷积双…...

Java面试八股文之暑假合集

八股文暑假合集 基础篇二分查找 java基础篇7月12号面向对象和面向过程的区别重载和重写String 7月13号自动装箱和拆箱静态方法构造方法成员变量和局部变量对象引用和对象实例返回值 与equals(重要)hashcode()和equals()HashMap 7月16号线程,进程和程序final关键字的…...

竞赛选题 深度学习卫星遥感图像检测与识别 -opencv python 目标检测

文章目录 0 前言1 课题背景2 实现效果3 Yolov5算法4 数据处理和训练5 最后 0 前言 🔥 优质竞赛项目系列,今天要分享的是 🚩 **深度学习卫星遥感图像检测与识别 ** 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐…...

机器学习第一周

一、概述 机器学习大致会被划分为两类:监督学习,无监督学习 1.1 监督学习 监督学习其实就是,给计算机一些输入x和正确的输出y(训练数据集),让他总结x->y的映射关系,从而给他其他的输入x&a…...

大数据采集技术与预处理学习一:大数据概念、数据预处理、网络数据采集

目录 大数据概念: 1.数据采集过程中会采集哪些类型的数据? 2.非结构化数据采集的特点是什么? 3.请阐述传统的数据采集与大数据采集的区别? ​​​​​​​ ​​​​​​​4.大数据采集的数据源有哪些?针对不同的数…...

MySQL - 为什么索引结构默认使用B+树,而不是其他?

B-Tree的缺点: 范围查询效率相对较低:虽然B-Tree支持范围查询,但在实际操作中可能需要进行多次树遍历,性能较差。磁盘空间利用不高:B-Tree中的非叶子节点也存储数据,导致磁盘空间利用率相对较低。更复杂的平…...

信息系统项目管理师教程 第四版【第3章-信息系统治理-思维导图】

信息系统项目管理师教程 第四版【第3章-信息系统治理-思维导图】...

2023.NET技术沙龙知识学习笔记

目录 一.Bootstrap Blazor UI组件库企业级应用介绍1.Blazor是什么2.为什么要用Blazor3.Bootstrap Blazor是什么 二.使用WebAssembly运行、扩展.NET应用程序1.WebAssembly简介2.WebAssembly的起源3.为什么选择二进制格式?4.WebAssembly与传统JavaScript的对比5.执行速…...

Golang教程——配置环境,再探GoLand

文章目录 一、Go是什么?二、环境配置验证配置环境变量 三、安装开发者工具GoLand四、HelloGolang 一、Go是什么? Go(也称为Golang)是一种开源的编程语言,由Google开发并于2009年首次发布。Go语言旨在提供一种简单、高…...

C++之lambda匿名、using、typedef总结【全】(二百四十九)

简介: CSDN博客专家,专注Android/Linux系统,分享多mic语音方案、音视频、编解码等技术,与大家一起成长! 优质专栏:Audio工程师进阶系列【原创干货持续更新中……】🚀 人生格言: 人生…...

基于SpringBoot的个人博客系统

基于SpringBootVue的个人博客系统的设计与实现~ 开发语言:Java数据库:MySQL技术:SpringBootMyBatisVue工具:IDEA/Ecilpse、Navicat、Maven 系统展示 主页 系统公告 博客详情 后台发文 摘要 基于Spring Boot的个人博客系统是一种…...

javascript中的继承

基本术语 本文中,proto [[Prototype]] 原型链 基本思想: 构造函数生成的对象有一个指针(proto)指向构造函数的原型。如果将构造函数1的原型指向另一个构造函数2的实例,则构造函数1的实例__proto__.proto 指向了构…...

智能问答技术在百度搜索中的应用

作者 | Xiaodong 导读 本文主要介绍了智能问答技术在百度搜索中的应用。包括机器问答的发展历程、生成式问答、百度搜索智能问答应用。欢迎大家加入百度搜索团队,共同探索智能问答技术的发展方向,文末有简历投递方式。 全文6474字,预计阅读时…...

STM32F4X SDIO(一) SD卡介绍

STM32F4X SDIO(一) SD卡介绍 SD卡分类外观分类容量分类传输速度分类 在之前的章节中,讲过有关嵌入式的存储设备,有用I2C驱动的EEPROM、SPI驱动的FLASH和MCU内部的FLASH,这类存储设备的优点是操作简单,但是缺…...

10分钟了解JWT令牌 (JSON Web)

10分钟了解JSON Web令牌(JWT) JSON Web Token(JWT)是目前最流行的跨域身份验证解决方案。今天给大家介绍JWT的原理和用法。 1.跨域身份验证 Internet服务无法与用户身份验证分开。一般过程如下。 1.用户向服务器发送用户名和密码。…...

【经验总结】ECU系统休眠后通过诊断报文唤醒ECU且唤醒网络后快发NM报文

目录 前言 正文 1.CanNM状体机分析 2.ComM状态机分析 3.解决方案 4.总结 前言...

基于Android 10系统的ROC-RK3399-PC Pro源码编译

基于Android 10系统的ROC-RK3399-PC Pro源码编译 一、开发环境搭建二、下载Android 10 SDK三、编译Android 10 SDK ROC-RK3399-PC Pro资料下载处:https://www.t-firefly.com/doc/download/145.html一、开发环境搭建 Android 10 SDK的编译对PC机的要求不低&#xff…...

网络滤波器/网络滤波器/脉冲变压器要怎样进行测试,一般要测试哪些参数?

Hqst华强盛导读:网络滤波器/网络滤波器/脉冲变压器要怎样进行测试,一般要测试哪些参数?测试网络滤波器的测试方法和步骤如何,需用到哪些测试工具和仪器设备呢? 一,网络流量的监控和过滤能力测试&am…...

基于vue天气数据可视化平台

目 录 摘 要 I ABSTRACT II 目 录 II 第1章 绪论 1 1.1背景及意义 1 1.2 国内外研究概况 1 1.3 研究的内容 1 第2章 相关技术 3 2.1 nodejs简介 4 2.2 express框架介绍 6 2.4 MySQL数据库 4 第3章 系统分析 5 3.1 需求分析 5 3.2 系统可行性分析 5 3.2.1技术可行性:…...

Go 语言常见的 ORM 框架

ORM(Object-Relational Mapping)是一种编程技术,用于将面向对象编程语言中的对象模型和关系数据库中的数据模型相互映射。ORM框架可以把数据操作从 SQL 语句中抽离出来,将关系型数据库中的表映射成对象,通过面向对象的…...

web vue 项目 Docker化部署

Web 项目 Docker 化部署详细教程 目录 Web 项目 Docker 化部署概述Dockerfile 详解 构建阶段生产阶段 构建和运行 Docker 镜像 1. Web 项目 Docker 化部署概述 Docker 化部署的主要步骤分为以下几个阶段: 构建阶段(Build Stage)&#xff1a…...

pikachu靶场通关笔记22-1 SQL注入05-1-insert注入(报错法)

目录 一、SQL注入 二、insert注入 三、报错型注入 四、updatexml函数 五、源码审计 六、insert渗透实战 1、渗透准备 2、获取数据库名database 3、获取表名table 4、获取列名column 5、获取字段 本系列为通过《pikachu靶场通关笔记》的SQL注入关卡(共10关&#xff0…...

基于matlab策略迭代和值迭代法的动态规划

经典的基于策略迭代和值迭代法的动态规划matlab代码,实现机器人的最优运输 Dynamic-Programming-master/Environment.pdf , 104724 Dynamic-Programming-master/README.md , 506 Dynamic-Programming-master/generalizedPolicyIteration.m , 1970 Dynamic-Programm…...

SQL慢可能是触发了ring buffer

简介 最近在进行 postgresql 性能排查的时候,发现 PG 在某一个时间并行执行的 SQL 变得特别慢。最后通过监控监观察到并行发起得时间 buffers_alloc 就急速上升,且低水位伴随在整个慢 SQL,一直是 buferIO 的等待事件,此时也没有其他会话的争抢。SQL 虽然不是高效 SQL ,但…...

C/C++ 中附加包含目录、附加库目录与附加依赖项详解

在 C/C 编程的编译和链接过程中,附加包含目录、附加库目录和附加依赖项是三个至关重要的设置,它们相互配合,确保程序能够正确引用外部资源并顺利构建。虽然在学习过程中,这些概念容易让人混淆,但深入理解它们的作用和联…...

华为OD机试-最短木板长度-二分法(A卷,100分)

此题是一个最大化最小值的典型例题, 因为搜索范围是有界的,上界最大木板长度补充的全部木料长度,下界最小木板长度; 即left0,right10^6; 我们可以设置一个候选值x(mid),将木板的长度全部都补充到x,如果成功…...

Oracle11g安装包

Oracle 11g安装包 适用于windows系统,64位 下载路径 oracle 11g 安装包...

k8s从入门到放弃之Pod的容器探针检测

k8s从入门到放弃之Pod的容器探针检测 在Kubernetes(简称K8s)中,容器探测是指kubelet对容器执行定期诊断的过程,以确保容器中的应用程序处于预期的状态。这些探测是保障应用健康和高可用性的重要机制。Kubernetes提供了两种种类型…...

Java求职者面试:微服务技术与源码原理深度解析

Java求职者面试:微服务技术与源码原理深度解析 第一轮:基础概念问题 1. 请解释什么是微服务架构,并说明其优势和挑战。 微服务架构是一种将单体应用拆分为多个小型、独立的服务的软件开发方法。每个服务都运行在自己的进程中,并…...

Vue3项目实现WPS文件预览和内容回填功能

技术方案背景:根据项目需要,要实现在线查看、在线编辑文档,并且进行内容的快速回填,根据这一项目背景,最终采用WPS的API来实现,接下来我们一起来实现项目功能。 1.首先需要先准备好测试使用的文档&#xf…...