数据分析:某电商优惠卷数据分析
数据分析:某电商优惠卷数据分析
作者:AOAIYI
专栏:python数据分析作者简介:Python领域新星作者、多项比赛获奖者:AOAIYI首页
😊😊😊如果觉得文章不错或能帮助到你学习,可以点赞👍收藏📁评论📒+关注哦!👍👍👍
📜📜📜如果有小伙伴需要数据集和学习交流,文章下方有交流学习区!一起学习进步!💪
文章目录
- 数据分析:某电商优惠卷数据分析
- 一、实验目的
- 二、加载数据
- 三、数据规整
- 四、数据分析
- 五、分析每天中优惠券的总体发放量与使用量情况
一、实验目的
随着移动设备的完善和普及,移动互联网+各行各业进入了高速发展阶段,这其中以O2O(Online to Offline)消费最为吸引眼球。据不完全统计,O2O行业估值上亿的创业公司至少有10家,也不乏百亿巨头的身影。O2O行业关联数亿消费者,各类APP每天记录了超过百亿条用户行为和位置记录,因而成为大数据科研和商业化运营的最佳结合点之一。 以优惠券盘活老用户或吸引新客户进店消费是O2O的一种重要营销方式。然而随机投放的优惠券对多数用户造成无意义的干扰。对商家而言,滥发的优惠券可能降低品牌声誉,同时难以估算营销成本。个性化投放是提高优惠券核销率的重要技术,它可以让具有一定偏好的消费者得到真正的实惠,同时赋予商家更强的营销能力。
二、加载数据
1.导入所需的模块
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns #绘图模块,基于matplotlib的可视化python包,不能完全替代matplotlib,只是对matplotlib进行升级
plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
%matplotlib inline
2.导入数据
offline = pd.read_csv(r"C:\Users\XWJ\Desktop\ccf_offline_stage1_train.csv",parse_dates=['Date_received','Date'])
offline.head(10)

parse_dates:将指定的列加载成日期的格式
NaT:时间日期格式的空值
3.使用函数info():数据表的基本信息(维度,列名称,数据格式,所占空间等)
offline.info()

三、数据规整
1.判断每一列当中有多少个空值
offline.isnull().sum()

2.把“Discount_rate”列中的满减政策转换成折扣率
offline['Discount_rate'] = offline['Discount_rate'].fillna('null')
offline.head()

def discount_rate_opt(s): #s代表每一个元素if ':' in s:split = s.split(':')discount_rate = (int(split[0]) - int(split[1]))/int(split[0])return round(discount_rate,2) #折扣率保留两位小数elif s == 'null':return np.NaNelse:return float(s)
offline['Discount_rate'] = offline['Discount_rate'].map(discount_rate_opt)
offline.head()

3.Coupon_id字段:null代表无优惠券,此时Discount_rate与Date_received字段无意义。
检查Coupon_id和Discount_rate与Date_received判断空值和非空值是否一一对应。
np.all([True,False,True])

np.all():判断一个课迭代数据中是否都为True,如果是返回True,否则返回False
判断优惠卷是否为空以及领券日期是否为空
nan1 = offline['Coupon_id'].isnull()
nan2 = offline['Date_received'].isnull()
np.all(nan1 == nan2)

结果=true,说明之前的猜测:Coupon_id与Date_received空值与非空值是一一对应的关系
nan3 = offline['Discount_rate'].isnull()
np.all(nan1 == nan3)

结果=true,说明之前的猜测:Coupon_id与Discount_rate空值与非空值是一一对应的关系
4.如果Date=null & Coupon_id!=null,有券未消费(cpon_no_consume) 如果Date=null & Coupon_id =null,无券未消费(no_cpon_no_consume) 如果Date!=null & Coupon_id=null,无券消费(no_cpon_consume) 如果Date!=null & Coupon_id!=null,有券消费(cpon_consume)
cpon_no_consume = offline[(offline['Date'].isnull() & offline['Coupon_id'].notnull())]
no_cpon_no_consume = offline[(offline['Date'].isnull() & offline['Coupon_id'].isnull())]
no_cpon_consume = offline[(offline['Date'].notnull() & offline['Coupon_id'].isnull())]
cpon_consume = offline[(offline['Date'].notnull() & offline['Coupon_id'].notnull())]
print('有券未消费:{}'.format(len(cpon_no_consume)))
print('无券未消费:{}'.format(len(no_cpon_no_consume))) #无意义,不需分析
print('无券消费:{}'.format(len(no_cpon_consume)))
print('有券消费:{}'.format(len(cpon_consume)))

用优惠券消费的用7万,相比其他用户来说,占比较少
四、数据分析
1.绘制饼图占比
consume_status_dict = {'cpon_no_consume':len(cpon_no_consume),'no_cpon_consume':len(no_cpon_consume),'cpon_consume':len(cpon_consume)}
consume_status = pd.Series(consume_status_dict)
consume_status

2.绘制消费方式构成的饼图
fig,ax=plt.subplots(1,1,figsize=(8,10))
consume_status.plot.pie(ax = ax,autopct='%1.1f%%',shadow=True,explode=[0.02,0.05,0.2],textprops={'fontsize':15,'color':'blue'},wedgeprops={'linewidth':1,'edgecolor':'black'},labels=['有券未消费 \n ({})'.format(len(cpon_no_consume)),'无券消费 \n ({})'.format(len(no_cpon_consume)),'用券消费 \n ({})'.format(len(cpon_consume))])
ax.set_ylabel('') #去除ylable
ax.set_title('消费占比情况')
plt.legend(labels=['有券未消费','无券消费','用券消费'])

有券未消费占比55.7%最大,说明大多数人拿完券之后,尚未使用
无圈消费用户占比40%,说明很多人没有使用优惠券,可能优惠券的吸引力不大,客户没在意;可能,新用户比较多。
用券消费用户占比较小4.3%,说明我们的优惠券使用率不高。可以考虑是不是加大优惠券力度.
3.在有券消费人群中,分析距离和优惠折扣
各商家对应的顾客到店平均距离
Merchant_distance = cpon_consume.groupby('Merchant_id')['Distance'].mean()
Merchant_distance[Merchant_distance==0]

有4076个商家,有1431个商家的用券消费用户平均范围在500米以内
各商家对应的顾客到店消费平均折扣力度
Merchant_discount_rate = cpon_consume.groupby('Merchant_id')['Discount_rate'].mean()
Merchant_discount_rate.sort_values()
Merchant_discount_rate.hist()
Merchant_discount_rate.mean()
Merchant_discount_rate


所有商家平均折扣的平均值:0.88
5.持券到店消费人数最多的商家
#对商家进行分组,取出用户id,对用户id进行去重统计数量、
popular_merchant = cpon_consume.groupby('Merchant_id')['User_id'].apply(lambda x:len(x.unique())).sort_values(ascending=False)
#找出持券消费人数>500的商家id
popular_merchant500 = popular_merchant[popular_merchant>500]
popular_merchant500.name = 'customer_count' #指定列名为消费者数量(持券消费者)
print(len(popular_merchant500))
print(popular_merchant500)

共有16家店铺,持券消费人数在500人以上
持券消费人数最多商家是5341,持券消费人数在2800
排名最后的商家,持券消费人数未559人
这批商家对优惠券的使用方法得当,消费者喜欢用优惠券进行消费,可以适当借鉴这批商家的推广力度
6.持券消费人数在500人以上的商家,连接顾客到店平均距离和平均折扣力度
merchant_pop_dis = pd.merge(left=popular_merchant500,right=Merchant_distance,on='Merchant_id',how='inner')
merchant_pop_dis_rate = pd.merge(left=merchant_pop_dis,right=Merchant_discount_rate,on='Merchant_id',how='inner')
merchant_pop_dis_rate

7.计算到店消费人数与平均距离和折扣力度的相关系数
#corr(correlation:相关系数),用来计算df数据中列与列的相关性(皮尔逊相关系数),取值范围[-1,1]之间
#1:完全正相关,-1:完全负相关
#绝对值越大:相关性越大,反之成立
#正相关:随着变量的增大,而增大,反之同理
#负相关:随着变量的增大,而减小,反之同理
merchant_pop_dis_rate.corr()

持券消费人数,与距离和折扣率都呈现出负相关,属于生活中的正常现象
用热力图展示相关系数
#用热力图展示相关系数(data:相关系数,annot:显示相关系数值,cmap:颜色范围,vmax:最大值,vmin:最小值)
sns.heatmap(data=merchant_pop_dis_rate.corr(),annot=True,cmap='Accent',vmax=1,vmin=-1)

#由图可知:
#1.到店消费人数的多少与顾客到店铺的距离之间呈现负相关,相关系数0.31,在0.3~0.5之间,为低度相关
#2.到店消费人数的多少与优惠打折力度呈现负相关,相关系数0.2,在0~0.3之间,为相关程度极弱
#综上所述,这些店家之所以火爆,应该是物美价廉导致,与距离和优惠力度相关性不大
五、分析每天中优惠券的总体发放量与使用量情况
1.统计每天优惠券发放数量和使用数量
offline['Date'].notnull().sum()

77.7万消费数据
offline['Date_received'].notnull().sum()

已经发送出105万优惠券
取出存在消费日期的记录,进行升序,再去重
date_sort = offline[offline['Date'].notnull()]['Date'].sort_values().unique()
date_sort[:5]

取出存在领券日期的记录,进行升序,再去重
date_receive_sort = offline[offline['Date_received'].notnull()]['Date_received'].sort_values().unique()
date_receive_sort[:5]

每天优惠券的使用量(即持券消费人群)
consume_num_everday = cpon_consume[['User_id','Date_received']]
consume_num_everday = consume_num_everday.groupby('Date_received').count()
consume_num_everday = consume_num_everday.rename(columns={'User_id':'count'})
consume_num_everday

每天发放的优惠券数量
coupon_sendout_everyday = offline[offline['Date_received'].notnull()][['Date_received','User_id']]
coupon_sendout_everyday = coupon_sendout_everyday.groupby('Date_received').count()
coupon_sendout_everyday = coupon_sendout_everyday.rename(columns={'User_id':'count'})
coupon_sendout_everyday

绘制每天发券量和每天用券量
plt.figure(figsize=(18,6))
plt.bar(x=date_receive_sort,height=coupon_sendout_everyday['count'],label='每天发券量')plt.yscale('log') #对y轴进行对数缩放
plt.legend()

plt.figure(figsize=(18,6))
plt.bar(x=date_receive_sort,height=coupon_sendout_everyday['count'],label='每天发券量')
plt.bar(x=date_sort,height=consume_num_everday['count'],label='每天用券量')
plt.yscale('log') #对y轴进行对数缩放
plt.legend()

#16年2月为例,用券量级别再1000,发券量再10万左右,在100倍左右,优惠券的使用率还是非常低的
计算每天的优惠券与发券量占比
plt.figure(figsize=(18,6))
plt.bar(x=date_receive_sort,height=consume_num_everday['count']/coupon_sendout_everyday['count'],label='百分比')
plt.legend()

#由图可知,优惠券使用率最高在16年3月底,达到了30%
#使用率最低在16年1月底,最低为3%左右。
#整体来看,优惠券使用率波动较大。
人生总是在前行,不论走到哪里,只要带着信念往前走,比别人多一点努力,你就会多一份成绩;比别人多一点志气,你就会多一份出息;比别人多一点坚持,你就会夺取胜利;比别人多一点执着,你就会创造奇迹。
相关文章:
数据分析:某电商优惠卷数据分析
数据分析:某电商优惠卷数据分析 作者:AOAIYI 专栏:python数据分析 作者简介:Python领域新星作者、多项比赛获奖者:AOAIYI首页 😊😊😊如果觉得文章不错或能帮助到你学习,可…...
性能测试流程
性能测试实战一.资源指标分析1.判断CPU是否瓶颈的方法2.判断内存是否瓶颈的方法3.判断磁盘I/O是否瓶颈的方法4.判断网络带宽是否是瓶颈的方法二.系统指标分析三.性能调优四.性能测试案例1.项目背景2.实施规划(1)需求分析(2)测试方…...
zookeeper集群的搭建,菜鸟升级大神必看
一、下载安装zookeeperhttp://archive.apache.org/dist/zookeeper/下载最新版本2.8.1http://archive.apache.org/dist/zookeeper/zookeeper-3.8.1/二、上传安装包到服务器上并且解压,重命名tar -zxvf apache-zookeeper-3.8.1-bin.tar.gzmv apache-zookeeper-3.8.1-b…...
C语言之习题练习集
💗 💗 博客:小怡同学 💗 💗 个人简介:编程小萌新 💗 💗 如果博客对大家有用的话,请点赞关注再收藏 🌞 文章目录牛客网题号: JZ17 打印从1到最大的n位数牛客网题号&#x…...
Buuctf [ACTF新生赛2020]Universe_final_answer 题解
1.程序逻辑 程序逻辑并不复杂: 首先输入字符串,然后对字符串进行一个判断是否满足条件的操作 如果满足则对字符串进行处理并输出,输出的就是flag 2.judge_860函数 显然根据这十个条件可以通过矩阵解线性方程组,这里对变量的命名做了一些调整,让Vi对应flag[i]方便读 …...
【Linux】环境变量
目录背景1.概念2.常见环境变量2.1 PATH指令和自定义程序向环境变量PATH中添加路径删除PATH中的路径2.2 env:显示所有环境变量2.3 环境变量相关的命令3.通过代码获取环境变量1.char* envp[]2.第三方变量enciron3.getenv函数获取指定环境变量4.利用获取的环境变量自制…...
单一职责原则
单一职责原则: 就一个类而言,应该只有一个引起它变化的原因,如果一个类承担的职责过多就等于把这些职责耦合在一起,至少会造成以下两方面的问题: 我们要去修改该类中的一个职责可能会影响到该类的其它职责。这种耦合…...
golangの并发编程(GMP模型)
GMP模型 && channel1. 前言2. GMP模型2.1. 基本概念2.2. 调度器策略2.3. go指令的调度流程2.4. go启动周期的M0和G02.5. GMP可视化2.6. GMP的几种调度场景3. channel3.1. channel的基本使用3.2. 同步器1. 前言 Go中的并发是函数相互独立运行的体现,Gorouti…...
MacBook Pro错误zsh: command not found: brew解决方法
问题描述:本地想安装Jenkins,但是brew指令不存在/我的电脑型号是19款的MacBook Pro(Intel芯片)。解决方法MacBook Pro 重新安装homebrew,用以下命令安装,序列号选择阿里巴巴下载源。/bin/zsh -c "$(cu…...
spring中BeanFactory 和ApplicationContext
在学习spring的高阶内容时,我们有必要先回顾一下spring回顾spring1.什么是springspring是轻量级的,指核心jar包时很小的;非侵入式的一站式框架(数据持久层,web层,核心aop),为了简化企业级开发。核心是IOC&a…...
HC32L17x的LL驱动库之dma
#include "hc32l1xx_ll_dma.h"/// //函 数: //功 能: //输入参数: //输出参数: //说 明: // uint8_t LL_DMA_DeInit(DMA_TypeDef* DMAx, uint32_t Channel) {__IO uint32_t* dmac NULL;dmac &(DMAx->CONFA0);Channel << 4;dmac …...
SSM项目 替换为 SpringBoot
一、运行SSM项目 保证项目改为SpringBoot后运行正常,先保证SSM下运行正常。 项目目录结构 创建数据库,导入sql文件 查看项目中连接数据jar版本,修改对应版本,修改数据库配置信息 配置启动tomcat 运行项目,测试正常…...
RL笔记:动态规划(2): 策略迭代
目录 0. 前言 (4.3) 策略迭代 Example 4.2: Jack’s Car Rental Exercise 4.4 Exercise 4.5 Exercise 4.6 Exercise 4.7 0. 前言 Sutton-book第4章(动态规划)学习笔记。本文是关于其中4.2节(策略迭代)。 (4.3) 策略迭代 基…...
2023软件测试金三银四常见的软件测试面试题-【测试理论篇】
三、测试理论 3.1 你们原来项目的测试流程是怎么样的? 我们的测试流程主要有三个阶段:需求了解分析、测试准备、测试执行。 1、需求了解分析阶段 我们的SE会把需求文档给我们自己先去了解一到两天这样,之后我们会有一个需求澄清会议, 我…...
蓝桥训练第二周
1 ,泛凯撒加密 内存限制:128 MB时间限制:1.000 S 题目描述 众所周知,在网络安全中分为明文和密文,凯撒加密是将一篇明文中所有的英文字母都向后移动三位(Z的下一位是A),比如a向后…...
详讲函数知识
目录 1. 函数是什么? 2. C语言中函数的分类: 2.1 库函数: 2.2 自定义函数 函数的基本组成: 3. 函数的参数 3.1 实际参数(实参): 3.2 形式参数(形参): …...
gin 框架初始教程文档
一 、gin 入门1. 安装gin :下载并安装 gin包:$ go get -u github.com/gin-gonic/gin2. 将 gin 引入到代码中:import "github.com/gin-gonic/gin"3.初始化项目go mod init gin4.完整代码package mainimport "github.com/gin-go…...
Maven的下载和安装【详细】
文章目录一、什么是Maven?二、Maven的安装与配置2.1下载Maven安装包2.2配置Maven环境变量2.3验证三、Idea配置Maven3.1配置 setting.xml文件3.2Idea配置Maven一、什么是Maven? Apache Maven是个项目管理和自动构建工具,基于项目对象模型&…...
[数据结构]:04-循环队列(数组)(C语言实现)
目录 前言 已完成内容 循环队列实现 01-开发环境 02-文件布局 03-代码 01-主函数 02-头文件 03-QueueCommon.cpp 04-QueueFunction.cpp 结语 前言 此专栏包含408考研数据结构全部内容,除其中使用到C引用外,全为C语言代码。使用C引用主要是为了…...
buu [GWCTF 2019]BabyRSA 1
题目描述: import hashlib import sympy from Crypto.Util.number import *flag GWHT{******} secret ******assert(len(flag) 38)half len(flag) / 2flag1 flag[:half] flag2 flag[half:]secret_num getPrime(1024) * bytes_to_long(secret)p sympy.nextp…...
wordpress后台更新后 前端没变化的解决方法
使用siteground主机的wordpress网站,会出现更新了网站内容和修改了php模板文件、js文件、css文件、图片文件后,网站没有变化的情况。 不熟悉siteground主机的新手,遇到这个问题,就很抓狂,明明是哪都没操作错误&#x…...
Lombok 的 @Data 注解失效,未生成 getter/setter 方法引发的HTTP 406 错误
HTTP 状态码 406 (Not Acceptable) 和 500 (Internal Server Error) 是两类完全不同的错误,它们的含义、原因和解决方法都有显著区别。以下是详细对比: 1. HTTP 406 (Not Acceptable) 含义: 客户端请求的内容类型与服务器支持的内容类型不匹…...
java_网络服务相关_gateway_nacos_feign区别联系
1. spring-cloud-starter-gateway 作用:作为微服务架构的网关,统一入口,处理所有外部请求。 核心能力: 路由转发(基于路径、服务名等)过滤器(鉴权、限流、日志、Header 处理)支持负…...
练习(含atoi的模拟实现,自定义类型等练习)
一、结构体大小的计算及位段 (结构体大小计算及位段 详解请看:自定义类型:结构体进阶-CSDN博客) 1.在32位系统环境,编译选项为4字节对齐,那么sizeof(A)和sizeof(B)是多少? #pragma pack(4)st…...
vscode(仍待补充)
写于2025 6.9 主包将加入vscode这个更权威的圈子 vscode的基本使用 侧边栏 vscode还能连接ssh? debug时使用的launch文件 1.task.json {"tasks": [{"type": "cppbuild","label": "C/C: gcc.exe 生成活动文件"…...
Map相关知识
数据结构 二叉树 二叉树,顾名思义,每个节点最多有两个“叉”,也就是两个子节点,分别是左子 节点和右子节点。不过,二叉树并不要求每个节点都有两个子节点,有的节点只 有左子节点,有的节点只有…...
是否存在路径(FIFOBB算法)
题目描述 一个具有 n 个顶点e条边的无向图,该图顶点的编号依次为0到n-1且不存在顶点与自身相连的边。请使用FIFOBB算法编写程序,确定是否存在从顶点 source到顶点 destination的路径。 输入 第一行两个整数,分别表示n 和 e 的值(1…...
Linux --进程控制
本文从以下五个方面来初步认识进程控制: 目录 进程创建 进程终止 进程等待 进程替换 模拟实现一个微型shell 进程创建 在Linux系统中我们可以在一个进程使用系统调用fork()来创建子进程,创建出来的进程就是子进程,原来的进程为父进程。…...
2023赣州旅游投资集团
单选题 1.“不登高山,不知天之高也;不临深溪,不知地之厚也。”这句话说明_____。 A、人的意识具有创造性 B、人的认识是独立于实践之外的 C、实践在认识过程中具有决定作用 D、人的一切知识都是从直接经验中获得的 参考答案: C 本题解…...
听写流程自动化实践,轻量级教育辅助
随着智能教育工具的发展,越来越多的传统学习方式正在被数字化、自动化所优化。听写作为语文、英语等学科中重要的基础训练形式,也迎来了更高效的解决方案。 这是一款轻量但功能强大的听写辅助工具。它是基于本地词库与可选在线语音引擎构建,…...
