当前位置: 首页 > news >正文

Linux环境开发工具yum、makefile的使用 【Linux】

文章目录

  • Linux软件包管理器 - yum
    • Linux下安装软件的方式
    • yum
    • 查找软件包
    • 如何实现本地机器和云服务器之间的文件互传
    • 卸载软件
    • Linux编译器 - gcc/g++
  • 程序的翻译过程
    • 1.预编译(预处理)
    • 2.编译(生成汇编)
    • 3.汇编(生成机器可识别代码)
    • 4.链接(你写的代码 + C标准库的二进制代码 ==> 生成可执行的二进制程序)
  • 解决普通用户无法使用sudo提权
  • 静态库与动态库
    • 动态链接
    • 静态链接:
  • debug &&release
  • Linux项目自动化构建工具 - make/Makefile
    • 依赖关系和依赖方法
    • 初步理解makefile的语法
  • gcc是怎么知道源文件不需要再编译了呢?
    • 为什么执行的指令是make和make clean呢?
    • makefile的推导规则
    • Makefile的简写
  • 缓冲区
  • \r和\n
  • 倒计时

Linux软件包管理器 - yum

Linux下安装软件的方式

1)下载到程序的源代码,自行进行编译,得到可执行程序。
2)获取rpm安装包,通过rpm命令进行安装。——Linux安装包
3)通过yum进行安装软件。——解决安装源、安装版本、安装依赖

yum

yum是一个在Fedora、RedHat以及CentOS中的前端软件包管理器,能够从指定的服务器自动下载RPM包并且安装,可以自动处理依赖性关系,并且一次安装所有依赖的软件包,无须繁琐地一次次下载、安装。
在这里插入图片描述
注意:一个服务器同一时刻只允许一个yum进行安装,不能在同一时刻同时安装多个软件。因为yum是从服务器上下载RPM包,所以在下载时必须联网,可以通过ping指令判断当前云服务器是否联网。
在这里插入图片描述

查找软件包

通过 yum list 命令可以罗列出当前一共有哪些软件包. 由于包的数目可能非常之多, 这里我们需要使用 grep 命令只筛选出我们关注的包. 例如:

[cxq@VM-4-10-centos ~]$ yum list |grep lrzsz

在这里插入图片描述
注意事项:

  • 软件包名称: 主版本号.次版本号.源程序发行号-软件包的发行号.主机平台.cpu架构.
  • “x86_64” 后缀表示64位系统的安装包, “i686” 后缀表示32位系统安装包. 选择包时要和系统匹配.
  • “el7” 表示操作系统发行版的版本. “el7” 表示的是 centos7/redhat7. “el6” 表示centos6/redhat6.
  • 最后一列, os 表示的是 “软件源” 的名称, 类似于 “小米应用商店”, “华为应用商店” 这样的概念.

如何实现本地机器和云服务器之间的文件互传

指令: rz -E
通过该指令可选择需要从本地机器上传到云服务器的文件。
在这里插入图片描述
指令: sz 文件名
在这里插入图片描述

卸载软件

[root@VM-4-10-centos ~]# yum remove lrzsz.x86_64  

yum会自动卸载该软件,这时候输入“y”确认卸载,当出现“complete”字样时,说明卸载完成

Linux编译器 - gcc/g++

程序的翻译过程

1.预编译(预处理)

预处理包含头文件展开,去注释,条件编译,宏替换这四个步骤

指令 gcc -E

[cxq@VM-4-10-centos lesson7]$ gcc -E mycode.c -o  mycode.i

-E告诉gcc从现在开始进行程序的编译 ,将预处理工作做完就停下来,不要往后走了!
-o将处理结果输出到指定文件,该选项后需紧跟输出文件名。在这个例子中,-o mycode.i 表示将预处理后的代码输出到名为mycode.i的文件中。
在这里插入图片描述

预处理之后的文件中多出来的一大堆代码其实是从Linux中的/usr/include/stdio.h头文件路径下的头文件stdio.h中拷贝过来的,从头文件stdio.h中就可以找到printf函数的声明,具体的实现在C标准函数库里面

总结:

  • 预处理功能主要包括头文件展开、去注释、宏替换、条件编译等。
  • 预处理指令是以#开头的代码行。
  • -E选项的作用是让gcc/g++在预处理结束后停止编译过程。
  • -o选项是指目标文件,“xxx.i”文件为已经过预处理的原始程序。

我们为什么能够在windows或者Linux上进行C/C++或者其他形式的开发呢?
我们的系统中一定要提前或者后续安装上,C/C++开发相关的头文件,库文件

C/C++开发环境不仅仅指的是vs,gcc、g++,更重要的是,语言本身的头文件和库文件!
其实我们安装vs2019、vs2022等,我们其实还在安装的时候,选择对应的开发包,同步也在下载c的头文件和库文件
在对编译型语言,安装对应的开发包,必定是下载安装对应的头文件+库文件

2.编译(生成汇编)

-S从现在开始进行程序的翻译,将编译工作做完,就停下来

[cxq@VM-4-10-centos lesson7]$ gcc -S mycode.c -o mycode.s

在这里插入图片描述

  • 在这个阶段中,gcc/g++首先检查代码的规范性、是否有语法错误等,以确定代码的实际要做的工作,在检查无误后,将代码翻译成汇编语言。
  • 用户可以使用-S选项来进行查看,该选项只进行编译而不进行汇编,生成汇编代码。
  • -o选项是指目标文件,“xxx.s”文件为已经过翻译的原始程序。

3.汇编(生成机器可识别代码)

-c 从现在开始进行程序的翻译,将汇编工作做完,就停下来

[cxq@VM-4-10-centos lesson7]$ gcc -c mycode.s -o mycode.o
[cxq@VM-4-10-centos lesson7]$ od mycode.o//将二进制文件以二进制形式打印到显示器上

在这里插入图片描述
形成的mycode.o文件是可重定位目标二进制文件,简称目标文件,Windows下也有这样的文件 ,在Windows中叫做obj文件
mycode.o这个可重定位目标二进制文件不可以独立执行,虽然已经是二进制了,但是还需要经过链接才能执行

4.链接(你写的代码 + C标准库的二进制代码 ==> 生成可执行的二进制程序)

[cxq@VM-4-10-centos lesson7]$ gcc mycode.o -o  mytest//将可重定位目标二进制文件,和库进行链接形成可执行程序
  • 在成功完成以上步骤之后,就进入了链接阶段。
  • 链接的主要任务就是将生成的各个“xxx.o”文件进行链接,生成可执行文件。
  • gcc/g++不带-E、-S、-c选项时,就默认生成预处理、编译、汇编、链接全过程后的文件。
  • 若不用-o选项指定生成文件的文件名,则默认生成的可执行文件名为a.out。

在这里插入图片描述

注意: 链接后生成的也是二进制文件。

解决普通用户无法使用sudo提权

[root@VM-4-10-centos ~]# vim /etc/sudoers

将用户切换为root,在root中找到/etc/sudoers文件并用vim打开,然后在下面列表中仿照root的格式添加普通用户,最后在底行模式下输入wq!保存并退出
在这里插入图片描述
上面步骤完成之后,普通用户也可以使用sudo指令了,因为我们已经将普通用户添加至信任列表了。

在这里插入图片描述

静态库与动态库

函数库一般分为静态库和动态库两种:

  • 静态库是指编译链接时,把库文件的代码全部加入到可执行文件当中,因此生成的文件比较大,但在运行时也就不再需要库文件了,静态库一般以.a为后缀。
  • 动态库与之相反,在编译链接时并没有把库文件的代码加入到可执行文件当中,而是在程序运行时由链接文件加载库,这样可以节省系统的开销,动态库一般以.so为后缀。

总结:

在Linux下库的命名:
动态库:lib作为前缀,.so作为后缀,
静态库:lib作为前缀,.a作为后缀,
去掉前缀和后缀,剩下的就是库名称!
stdio的std就是standard标准的意思

动态链接

优点:省空间(磁盘的空间,内存的空间),体积小,加载速度快。
 缺点:依赖动态库,动态库一旦缺失,导致各个程序都无法运行

静态链接:

优点:不依赖第三方库,程序的可移植性较高。
 缺点:比较消耗磁盘空间,内存空间,网络空间等资源。

在Linux中,编译形成可执行程序,默认采用的就是动态链接(提供动态库),我们可以使用file指令进行查看。
在这里插入图片描述
我们还可以使用ldd指令查看动态链接的可执行文件所依赖的库。
在这里插入图片描述
gcc和g++默认采用的是动态链接,在Linux中,如果要按照静态链接的方式,进行形成可执行程序,需要添加-static选项–提供静态库

[cxq@VM-4-10-centos lesson7]$ gcc mycode.c  -o mytest-static -static

在这里插入图片描述

总结:

1如果我们没有静态库,但是我们就要-static,行不行呢? 不行
2如果我们没有动态库,只有静态库,而且gcc能找到? 能的,gcc默认优先动态链接
3-static的本质:改变优先级,如果加了-static选项,所有的链接要求变成全部变成静态链接
4不一定是纯的全部动态链接或者静态链接,可能是混合的!

扩展:可执行程序形成的时候,不是没有顺序的二进制构成,有自己的格式的,可执行程序有自己的二进制格式,ELF格式

debug &&release

debug可以被追踪调试,在形成可执行程序的时候,添加了debug信息

[cxq@VM-4-10-centos lesson7]$ gcc mycode.c -o mytest-debug -g 

在这里插入图片描述

[cxq@VM-4-10-centos lesson7]$ readelf -S mytest-debug

Linux项目自动化构建工具 - make/Makefile

make是一条命令,Makefile是一个当前目录下的文件,两个搭配使用,完成项目自动化构建,makefile文件既可以写成makefile,也可以写成Makefile
在这里插入图片描述

依赖关系和依赖方法

makefile文件中,要写的是依赖关系和依赖方法,例如生成的可执行程序mycode依赖的就是mycode.c源文件,没有这个源文件,就没有mycode这个可执行程序,生成可执行程序的过程中又依赖方法gcc mycode.c -o mycode也就是需要gcc来编译链接生成可执行程序。

在这里插入图片描述

依赖关系: 文件A的变更会影响到文件B,那么就称文件B依赖于文件A

  • 例如,mycode文件是由mycode.c文件通过预处理、编译以及汇编之后生成的文件,所以mycode.c文件的改变会影响mycode,所以说mycode文件依赖于mycode.c文件。

依赖方法: 如果文件B依赖于文件A,那么通过文件A得到文件B的方法,就是文件B依赖于文件A的依赖方法

  • 例如:mycode依赖于mycode.c,mycode.c 通过 gcc mycode.c -o mycode指令 得到mycode这个可执行程序,那么mycode依赖于mycode.c的依赖方法就是gcc -c -o mycode mycode.c

初步理解makefile的语法

在这里插入图片描述
make一次后继续make为什么就不行了? make会根据源文件和源文件生成的可执行程序的新旧,判定是否需要重新执行依赖关系进行编译,从而提供编译效率
如何做到的?
首先我们得清楚一定是源文件形成可执行程序,换句话说先有源文件,才有源文件生成的可执行程序, 所以一般来说,源文件的最近修改时间比源文件生成的可执行程序要新

当我们发现源文件还有bug,我们就会更改源文件,但是历史上曾经还有源文件生成的可执行程序,那么源文件的最近修改时间,一定要比可执行程序要新!

make只需要**比较可执行程序的最近修改时间 和源文件的最近修改时间(Modify)**来判断是否需要重新编译
可执行程序 新于 源文件 ,不需要重新编译
可执行程序 老于 源文件 ,需要重新编译

如果我们想要对应的依赖关系总是被执行? .PHONY (伪目标)
被.PHONY关键字修饰的对象是一个伪目标,该目标总是被执行的。
由于第一条依赖关系和依赖方法没有被.PHONY:修饰,所以如果命令执行过,且源文件没有被改动过的话,make是不允许连续多次执行的,但clean的依赖关系和依赖方法被.PHONY:修饰了,所以它是可以多次执行的

换言之,有了关键字.PHONY:修饰过后,就不要通过对比源文件和可执行程序Modify时间来判断是否能够执行指令了,不走这套规则

gcc是怎么知道源文件不需要再编译了呢?

Modify代表文件内容被修改的时间,Change代表文件属性被修改的时间,Access代表最后一次访问文件的时间

在这里插入图片描述
当已经使用make指令过后,无法继续使用时,我们可以用touch,touch后面跟上已存在的文件,可以更新此文件的三个时间,这个时候就又可以用make指令了
在这里插入图片描述

为什么执行的指令是make和make clean呢?

make也可以跟上mycode使用,make默认从上到下扫描文本makefile的时候,第一个扫描到的目标文件可以省略名称使用,例如直接使用make,执行的就是makefile里面的第一个目标文件,并且默认情况下makefile只形成一个目标文件,也就是总目标文件只能有一个。

makefile的推导规则

  1 mycode:mycode.o 2     gcc mycode.o -o mycode                                                                                                                                            3 mycode.o:mycode.s                  4     gcc -c mycode.s -o mycode.o       5 mycode.s:mycode.i                     6     gcc -S mycode.i -o mycode.s7 mycode.i:mycode.c              8     gcc -E mycode.c -o mycode.i9                  10 .PHONY:clean     11 clean:           12      rm -f mycode

根据依赖关系列表,make先找mycode,发现没有,那就去找mycode依赖的mycode.o,结果发现也没有,那就去找mycode.o依赖的mycode.s,结果发现还是没有,那就去找mycode.s依赖的mycode.i,结果没找到,那就去找mycode.i依赖的mycode.c结果找到了,那就执行他们之间的依赖方法gcc -E mycode.c -o mycode.i ,然后mycode.i 就有了,然后再一点一点向上执行每条依赖方法

这就是整个make的依赖性,类似于堆栈结构,make会一层又一层地去找文件的依赖关系,直到最终编译出第一个目标文件

Makefile的简写

Makefile文件的简写方式:

$@:表示依赖关系中的目标文件(冒号左侧)。
$^:表示依赖关系中的依赖文件列表(冒号右侧全部)。
$<:表示依赖关系中的第一个依赖文件(冒号右侧第一个)。

在这里插入图片描述
例如 : $@是冒号左侧的目标文件mycode , $^是mycode.c

缓冲区

缓冲区 :就是由c语言维护的一段内存

代码一:
在这里插入图片描述
先输出字符串hello world 然后休眠3秒之后结束运行
代码二:
在这里插入图片描述
代码中删除了字符串后面的’\n’,结果就截然不同,结果是:先休眠3秒,然后打印字符串hello world之后结束运行。该现象就证明了行缓冲区的存在。

显示器对应的是行刷新,即当缓冲区当中遇到’\n’或是缓冲区被写满才会被打印,代码二中并没有’\n’,所以字符串hello world先被写到缓冲区中,然后休眠3秒后,直到程序运行结束时才将hello world打印到显示器当中。

\r和\n

\r: 回车,使光标回到本行行首。
\n: 换行,使光标下移一格。

倒计时

 1: main.c  ⮀                                                                              ⮂⮂ buffers 1 #include"processBar.h"2 #include<unistd.h>3 int main()4 {5   //倒计时6   int count =10 ;7   while(count>=0  )8   {9    printf("%-2d\r",count);                                                                          10    fflush (stdout); //刷新数据11    count --;12    sleep(1);13 14    }15   printf("\n");16   return 0 ;17 }

相关文章:

Linux环境开发工具yum、makefile的使用 【Linux】

文章目录 Linux软件包管理器 - yumLinux下安装软件的方式yum查找软件包如何实现本地机器和云服务器之间的文件互传卸载软件Linux编译器 - gcc/g 程序的翻译过程1.预编译&#xff08;预处理&#xff09;2.编译&#xff08;生成汇编&#xff09;3.汇编&#xff08;生成机器可识别…...

第六章(6):Python中的函数—闭包和装饰器

1.闭包 在Python中,闭包是指函数与其相关的自由变量的一个整体。当一个函数返回了一个内部函数时,这个内部函数可以访问其定义所在的外部函数中的变量,即使这个外部函数已经返回了。这种特性就叫做闭包。 代码示意: def funca():x = 250def funcb():print(我仍然可以访问…...

Linux--安装与配置虚拟机及虚拟机服务器坏境配置与连接---超详细教学

一&#xff0c;操作系统介绍 1.1.什么是操作系统 操作系统&#xff08;Operating System&#xff0c;简称OS&#xff09;是一种系统软件&#xff0c;它是计算机硬件和应用软件之间的桥梁。它管理计算机的硬件和软件资源&#xff0c;为应用程序提供接口和服务&#xff0c;并协调…...

基于SSM的个性化美食推荐系统设计与实现

末尾获取源码 开发语言&#xff1a;Java Java开发工具&#xff1a;JDK1.8 后端框架&#xff1a;SSM 前端&#xff1a;采用JSP技术开发 数据库&#xff1a;MySQL5.7和Navicat管理工具结合 服务器&#xff1a;Tomcat8.5 开发软件&#xff1a;IDEA / Eclipse 是否Maven项目&#x…...

Django 全局配置 settings 详解

文章目录 1 概述1.1 Django 目录结构 2 常用配置&#xff1a;settings.py2.1 注册 APP&#xff1a;INSTALLED_APPS2.2 模板路径&#xff1a;TEMPLATES2.3 静态文件&#xff1a;STATICFILES_DIRS2.4 数据库&#xff1a;DATABASES2.5 允许访问的主机&#xff1a;ALLOWED_HOSTS 1 …...

uniapp接口请求api封装,规范化调用

封装规范和vue中的差不多&#xff0c;都是统一封装成一个request对象&#xff0c;然后在api.js里面调用。 先创建一个utils文件夹&#xff0c;然后里面创建一个request.js&#xff0c;代码如下&#xff1a; export const baseURL 基础url地址const request (options) > …...

色彩校正及OpenCV mcc模块介绍

一、术语 1.光&#xff1a;是电磁波&#xff0c;可见光是可被人眼感知的电磁波。可见光大约在400-700nm波段。光子携带的能量与波长成反比&#xff0c;400nm--700nm之间的单色光的颜色从紫色渐变成红色。 2.光谱&#xff1a;除了太阳光源外&#xff0c;LED灯、白炽灯等各种照明…...

2023mathorcup大数据数学建模竞赛A题坑洼道路识别67页完整高质量原创论文

大家好&#xff0c;从昨天肝到现在&#xff0c;终于完成了本次mathorcup大数据数学建模竞赛A题基于计算机视觉的坑洼道路检测和识别的完整论文了。 给大家看一下目录吧&#xff1a; 摘 要&#xff1a; 10 一、问题重述 12 二&#xff0e;问题分析 13 2.1问题一 13 2.2问题…...

【k8s】5、资源管理命令-声明式

目录 一、 yaml和json介绍 1、yuml语言介绍 2、k8s支持的文件格式 3、yaml和json的主要区别 二、声明式对象管理 1、命令式对象配置 2、声明式对象配置 3、声明式对象管理命令介绍 三、编写资源配置清单 1、 编写yaml文件 2、 启动并查看资源 3、创建service服务对外…...

信息系统项目管理师教程 第四版【第6章-项目管理概论-思维导图】

信息系统项目管理师教程 第四版【第6章-项目管理概论-思维导图】 课本里章节里所有蓝色字体的思维导图...

【Flutter】Flutter 中的图片管理 图片优化的最佳实践

【Flutter】Flutter 中的图片管理 图片优化的最佳实践 文章目录 一、前言二、图片资源的重要性1. 对于项目复杂性的影响2. 性能和资源优化3. 国际化和多平台支持4. UI/UX 的角度看图片管理5. 图片资源与应用安全三、Flutter 中的图片资源分类1. Asset 图片2. 网络图片3. 本地文…...

dash--项目的前端展示简单基础

1.前置工作 创建虚拟环境&#xff1a; sudo apt-get install python3-venv # 安装 python3 -m venv venv # 在本目录下创建venv虚拟环境&#xff08;也是一个文件夹。如果用不到这个虚拟环境以后就rm -rf venv&#xff09; source venv/bin/activate # 激活虚拟环境临时使用清华…...

LeetCode 面试题 16.06. 最小差

文章目录 一、题目二、C# 题解 一、题目 给定两个整数数组 a 和 b&#xff0c;计算具有最小差绝对值的一对数值&#xff08;每个数组中取一个值&#xff09;&#xff0c;并返回该对数值的差 示例&#xff1a; 输入&#xff1a;{1, 3, 15, 11, 2}, {23, 127, 235, 19, 8} 输出&…...

css-表格样式

滑动表格 外层嵌套一个盒子设置固定大小&#xff0c;并添加overflow:hidden auto只有y轴滑动&#xff0c;隐藏x轴滑动 表头固定不滑动可以添加position:sticky;top:0 <div style"width:878px;height:685px;overflow:hidden auto" class"tableDiv">…...

Linux对网络通信的实现

一、NIO为什么很少注册OP_WRITE事件 1、OP_WRITE触发条件&#xff1a;当操作系统写缓冲区有空闲时就绪。一般情况下写缓冲区都有空闲空间&#xff0c;小块数据直接写入即可&#xff0c;没必要注册该操作类型&#xff0c;否则该条件不断就绪浪费cpu&#xff1b;但如果是写密集型…...

【开源】基于SpringBoot的车险自助理赔系统的设计和实现

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 数据中心模块2.2 角色管理模块2.3 车辆档案模块2.4 车辆理赔模块2.5 理赔照片模块 三、系统设计3.1 用例设计3.2 数据库设计3.2.1 角色表3.2.2 车辆表3.2.3 理赔表3.2.4 理赔照片表 四、系统展示五、核心代码5.1 查询车…...

减少磁盘读/写中延迟时间的方法(交替编号,错位命名)

目录 1.延迟时间的优化空间2.交替编号3.磁盘地址结构的设计1.若物理地址结构是&#xff08;盘面号&#xff0c;柱面号&#xff0c;扇区号&#xff09;2.若物理地址结构是&#xff08;柱面号&#xff0c;盘面号&#xff0c;扇区号) 4.错位命名 关于磁盘延迟时间的概念请看博主的…...

Perl爬虫程序

以下是一个使用Perl爬虫程序&#xff0c;用于爬取图像。每行代码的中文解释如下&#xff1a; #!/usr/bin/perl ​ use strict; use warnings; use Mojo::UserAgent; use JSON; ​ # 创建一个Mojo::UserAgent实例 my $ua Mojo::UserAgent->new; ​ # 使用获取代理 my $prox…...

UE5使用Dash插件实现程序化地形场景制作

目录 0 dash下载后激活 1 初步使用 2 导入bridge的资产路径 3 练习成果 4 参考链接 0 dash下载后激活 1 初步使用 Dash插件点击蓝色的A&#xff0c;可以使用。 通过输入不同提示命令&#xff0c;来激活不同的功能。 2 导入bridge的资产路径 这里需要注意是UAsserts…...

23种设计模式(10)——门面模式

门面模式(Facade Pattern)又叫作外观模式&#xff0c;提供了一个统一的接口&#xff0c;用来访问子系统中的一群接口。其主要特征是定义了一个高层接口&#xff0c;让子系统更容易使用&#xff0c;属于结构型设计模式。 其实&#xff0c;在日常编码工作中&#xff0c;我们都在有…...

XCTF-web-easyupload

试了试php&#xff0c;php7&#xff0c;pht&#xff0c;phtml等&#xff0c;都没有用 尝试.user.ini 抓包修改将.user.ini修改为jpg图片 在上传一个123.jpg 用蚁剑连接&#xff0c;得到flag...

模型参数、模型存储精度、参数与显存

模型参数量衡量单位 M&#xff1a;百万&#xff08;Million&#xff09; B&#xff1a;十亿&#xff08;Billion&#xff09; 1 B 1000 M 1B 1000M 1B1000M 参数存储精度 模型参数是固定的&#xff0c;但是一个参数所表示多少字节不一定&#xff0c;需要看这个参数以什么…...

3.3.1_1 检错编码(奇偶校验码)

从这节课开始&#xff0c;我们会探讨数据链路层的差错控制功能&#xff0c;差错控制功能的主要目标是要发现并且解决一个帧内部的位错误&#xff0c;我们需要使用特殊的编码技术去发现帧内部的位错误&#xff0c;当我们发现位错误之后&#xff0c;通常来说有两种解决方案。第一…...

在rocky linux 9.5上在线安装 docker

前面是指南&#xff0c;后面是日志 sudo dnf config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo sudo dnf install docker-ce docker-ce-cli containerd.io -y docker version sudo systemctl start docker sudo systemctl status docker …...

Java多线程实现之Thread类深度解析

Java多线程实现之Thread类深度解析 一、多线程基础概念1.1 什么是线程1.2 多线程的优势1.3 Java多线程模型 二、Thread类的基本结构与构造函数2.1 Thread类的继承关系2.2 构造函数 三、创建和启动线程3.1 继承Thread类创建线程3.2 实现Runnable接口创建线程 四、Thread类的核心…...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比

在机器学习的回归分析中&#xff0c;损失函数的选择对模型性能具有决定性影响。均方误差&#xff08;MSE&#xff09;作为经典的损失函数&#xff0c;在处理干净数据时表现优异&#xff0c;但在面对包含异常值的噪声数据时&#xff0c;其对大误差的二次惩罚机制往往导致模型参数…...

【电力电子】基于STM32F103C8T6单片机双极性SPWM逆变(硬件篇)

本项目是基于 STM32F103C8T6 微控制器的 SPWM(正弦脉宽调制)电源模块,能够生成可调频率和幅值的正弦波交流电源输出。该项目适用于逆变器、UPS电源、变频器等应用场景。 供电电源 输入电压采集 上图为本设计的电源电路,图中 D1 为二极管, 其目的是防止正负极电源反接, …...

RSS 2025|从说明书学习复杂机器人操作任务:NUS邵林团队提出全新机器人装配技能学习框架Manual2Skill

视觉语言模型&#xff08;Vision-Language Models, VLMs&#xff09;&#xff0c;为真实环境中的机器人操作任务提供了极具潜力的解决方案。 尽管 VLMs 取得了显著进展&#xff0c;机器人仍难以胜任复杂的长时程任务&#xff08;如家具装配&#xff09;&#xff0c;主要受限于人…...

Web后端基础(基础知识)

BS架构&#xff1a;Browser/Server&#xff0c;浏览器/服务器架构模式。客户端只需要浏览器&#xff0c;应用程序的逻辑和数据都存储在服务端。 优点&#xff1a;维护方便缺点&#xff1a;体验一般 CS架构&#xff1a;Client/Server&#xff0c;客户端/服务器架构模式。需要单独…...

stm32wle5 lpuart DMA数据不接收

配置波特率9600时&#xff0c;需要使用外部低速晶振...