条件期望4
条件期望例题----快排算法的分析
快速排序算法的递归定义如下:
 有n个数(n≥2n\geq 2n≥2), 一开始随机选取一个数xix_ixi, 并将xix_ixi和其他n-1个数进行比较, 记SiS_iSi为比xix_ixi小的元素构成的集合, Siˉ\bar{S_i}Siˉ为比xix_ixi大的元素构成的集合, 然后分别对SiS_iSi和Siˉ\bar{S_i}Siˉ进行排序.
 如果集合中元素个数等于2, 则简单比较即可, 如果大于2, 则重复上述过程.
 我们选取整个排序过程中的比较次数的期望作为算法效率分析的指标. 记MnM_nMn为在n个不同元素的集合中, 实行快速排序算法所需要的比较次数的均值, 易知M0=M1=0,M2=0.5M_0 = M_1 = 0, M_2 = 0.5M0=M1=0,M2=0.5.
 易知
 Mn=∑j=1nE[比较次数∣初始随机取的元素为集合中的第j个值]1nM_n = \sum_{j=1}^nE[比较次数|初始随机取的元素为集合中的第j个值]\frac{1}{n} Mn=j=1∑nE[比较次数∣初始随机取的元素为集合中的第j个值]n1
 如果初始选的值是所有元素中第jjj小的, 则对应的SSS集合就有j−1j-1j−1个元素, Sˉ\bar{S}Sˉ就有n-j个元素, 因为第一次选取之后一定会比较n−1n-1n−1次, 所以可得
 Mn=∑j=1n(n−1+Mj−1+Mn−j)1n=n−1+1n∑k=1n−1Mk+1n∑m=n−11Mm=n−1+2n∑k=1n−1Mk\begin{split} M_n &= \sum_{j=1}^n(n-1 + M_{j-1} + M_{n-j})\frac{1}{n} \\ &=n-1 + \frac{1}{n}\sum_{k=1}^{n-1}M_k + \frac{1}{n}\sum_{m=n-1}^{1}M_m \\ &=n-1 + \frac{2}{n}\sum_{k=1}^{n-1}M_k \end{split} Mn=j=1∑n(n−1+Mj−1+Mn−j)n1=n−1+n1k=1∑n−1Mk+n1m=n−1∑1Mm=n−1+n2k=1∑n−1Mk
 所以
 nMn=n(n−1)+2∑k=1n−1MknM_n = n(n-1) + 2\sum_{k=1}^{n-1}M_k nMn=n(n−1)+2k=1∑n−1Mk
 易知
 (n+1)Mn+1=n(n+1)+2∑k=1nMk(n+1)M_{n+1} = n(n+1) + 2\sum_{k=1}^{n}M_k (n+1)Mn+1=n(n+1)+2k=1∑nMk
 所以
 (n+1)Mn+1−nMn=n(n−1)=2n+2Mn(n+1)M_{n+1} - nM_n = n(n-1) = 2n+2M_n (n+1)Mn+1−nMn=n(n−1)=2n+2Mn
 即
 (n+1)Mn+1=2n+(n+2)Mn(n+1)M_{n+1} = 2n+(n+2)M_n (n+1)Mn+1=2n+(n+2)Mn
 所以
 Mn+1=2nn+1+n+2n+1MnM_{n+1} = \frac{2n}{n+1} + \frac{n+2}{n+1}M_n Mn+1=n+12n+n+1n+2Mn
两边同除以(n+2)(n+2)(n+2), 有
 Mn+1n+2=2n(n+1)(n+2)+Mnn+1\frac{M_{n+1}}{n+2} = \frac{2n}{(n+1)(n+2)} + \frac{M_n}{n+1} n+2Mn+1=(n+1)(n+2)2n+n+1Mn
 迭代这个过程, 有
 Mn+1n+2=2n(n+1)(n+2)+(2(n−1)n(n+1)+Mn−1n)=⋯=2∑k=0n−1n−k(n+1−k)(n+2−k)(M1=0)\begin{split} \frac{M_{n+1}}{n+2} &= \frac{2n}{(n+1)(n+2)} + \left(\frac{2(n-1)}{n(n+1)} + \frac{M_{n-1}}{n} \right) \\ &=\cdots \\ &=2\sum_{k=0}^{n-1}\frac{n-k}{(n+1-k)(n+2-k)} \\ &(M_1 = 0) \end{split} n+2Mn+1=(n+1)(n+2)2n+(n(n+1)2(n−1)+nMn−1)=⋯=2k=0∑n−1(n+1−k)(n+2−k)n−k(M1=0)
 所以
 Mn+1=2(n+2)∑i=1ni(i+1)(i+2)(i=n−k)=2(n+2)[∑i=1n2i+2−∑i=1n1i+1]≈2(n+2)[∫3n+22xdx−∫2n+11xdx](步长为1的数值积分)≈2(n+2)ln(n+2)\begin{split} M_{n+1} &= 2(n+2)\sum_{i=1}^{n}\frac{i}{(i+1)(i+2)} \\ &(i = n-k) \\ &=2(n+2)\left[\sum_{i=1}^{n}\frac{2}{i+2} - \sum_{i=1}^{n}\frac{1}{i+1} \right] \\ &\approx 2(n+2)\left[ \int_3^{n+2}\frac{2}{x}dx - \int_2^{n+1}\frac{1}{x}dx\right] \\ &(步长为1的数值积分) \\ &\approx 2(n+2)ln(n+2) \end{split} Mn+1=2(n+2)i=1∑n(i+1)(i+2)i(i=n−k)=2(n+2)[i=1∑ni+22−i=1∑ni+11]≈2(n+2)[∫3n+2x2dx−∫2n+1x1dx](步长为1的数值积分)≈2(n+2)ln(n+2)
相关文章:
条件期望4
条件期望例题----快排算法的分析 快速排序算法的递归定义如下: 有n个数(n≥2n\geq 2n≥2), 一开始随机选取一个数xix_ixi, 并将xix_ixi和其他n-1个数进行比较, 记SiS_iSi为比xix_ixi小的元素构成的集合, Siˉ\bar{S_i}Siˉ为比xix_ixi大的元素构成的集合, 然后分…...
网络协议分析(2)判断两个ip数据包是不是同一个数据包分片
一个节点收到两个IP包的首部如下:(1)45 00 05 dc 18 56 20 00 40 01 bb 12 c0 a8 00 01 c0 a8 00 67(2)45 00 00 15 18 56 00 b9 49 01 e0 20 c0 a8 00 01 c0 a8 00 67分析并判断这两个IP包是不是同一个数据报的分片&a…...
6.2 负反馈放大电路的四种基本组态
通常,引入交流负反馈的放大电路称为负反馈放大电路。 一、负反馈放大电路分析要点 如图6.2.1(a)所示电路中引入了交流负反馈,输出电压 uOu_OuO 的全部作为反馈电压作用于集成运放的反向输入端。在输入电压 uIu_IuI 不变的情况下,若由于…...
MySQL进阶之锁
锁是计算机中协调多个进程或线程并发访问资源的一种机制。在数据库中,除了传统的计算资源竞争之外,数据也是一种提供给许多用户共享的资源,如何保证数据并发访问的一致性和有效性是数据库必须解决堆的一个问题,锁冲突也是影响数据…...
【Mac 教程系列】如何在 Mac 上破解带有密码的 ZIP 压缩文件 ?
如何使用 fcrackzip 在 Mac 上破解带有密码的 ZIP 压缩文件? 用 markdown 格式输出答案。 在 Mac 上破解带有密码的 ZIP 压缩文件 使用解压缩软件,如The Unarchiver,将文件解压缩到指定的文件夹。 打开终端,输入 zip -er <zipfile> &…...
【Acwing 周赛复盘】第92场周赛复盘(2023.2.25)
【Acwing 周赛复盘】第92场周赛复盘(2023.2.25) 周赛复盘 ✍️ 本周个人排名:1293/2408 AC情况:1/3 这是博主参加的第七次周赛,又一次体会到了世界的参差(这次周赛记错时间了,以为 19:15 开始&…...
L1-087 机工士姆斯塔迪奥
在 MMORPG《最终幻想14》的副本“乐欲之所瓯博讷修道院”里,BOSS 机工士姆斯塔迪奥将会接受玩家的挑战。 你需要处理这个副本其中的一个机制:NM 大小的地图被拆分为了 NM 个 11 的格子,BOSS 会选择若干行或/及若干列释放技能,玩家…...
本周大新闻|索尼PS VR2立项近7年;传腾讯将引进Quest 2
本周大新闻,AR方面,传立讯精密开发苹果初代AR头显,第二代低成本版将交给富士康;iOS 16.4代码曝光新的“计算设备”;EM3推出AR眼镜Stellar Pro;努比亚将在MWC2023推首款AR眼镜。VR方面,传闻腾讯引…...
aws console 使用fargate部署aws服务快速跳转前端搜索栏
测试过程中需要在大量资源之间跳转,频繁的点击不如直接搜索来的快,于是写了一个搜索框方便跳转。 前端的静态页面可以通过s3静态网站托管实现,但是由于中国区需要备案的原因,可以使用ecs fargate部署 步骤如下: 编写…...
Redis实战之Redisson使用技巧详解
一、摘要什么是 Redisson?来自于官网上的描述内容如下!Redisson 是一个在 Redis 的基础上实现的 Java 驻内存数据网格客户端(In-Memory Data Grid)。它不仅提供了一系列的 redis 常用数据结构命令服务,还提供了许多分布…...
SQLAlchemy
文章目录SQLAlchemy介绍SQLAlchemy入门使用原生sql使用orm外键关系一对多关系多对多关系基于scoped_session实现线程安全简单表操作实现方案CRUDFlask 集成 sqlalchemySQLAlchemy 介绍 SQLAlchemy是一个基于Python实现的ORM框架。该框架建立在 DB API之上,使用关系…...
【Linux学习笔记】8.Linux yum 命令和apt 命令
前言 本章介绍Linux的yum命令和apt命令。 Linux yum 命令 yum( Yellow dog Updater, Modified)是一个在 Fedora 和 RedHat 以及 SUSE 中的 Shell 前端软件包管理器。 基于 RPM 包管理,能够从指定的服务器自动下载 RPM 包并且安装…...
windows服务器实用(4)——使用IIS部署网站
windows服务器实用——IIS部署网站 如果把windows服务器作为web服务器使用,那么在这个服务器上部署网站是必须要做的事。在windows服务器上,我们一般使用IIS部署。 假设此时前端给你一个已经完成的网站让你部署在服务器上,别人可以在浏览器…...
Random(二)什么是伪共享?@sun.misc.Contended注解
目录1.背景简介2.伪共享问题3.问题解决4.JDK使用示例1.背景简介 我们知道,CPU 是不能直接访问内存的,数据都是从高速缓存中加载到寄存器的,高速缓存又有 L1,L2,L3 等层级。在这里,我们先简化这些复杂的层级…...
Linux解压压缩
打包tar首先我们得提一下专门用于打包文件的命令——tartar用于备份文件,打包多个文件或者目录,也可以用于还原被打包的文件假设打包目录test下的文件 tar -cvf test.tar ./test 假设打包目录test下的文件,并用gzip命令将包压缩 tar -zcvf test.tar ./te…...
JavaSe第3次笔记
1.String str "hello";字符串类型。 2.两个字符串类型相加意思是拼接,类似于c语言里面的strcat函数。 3.整型变成字符串类型: int a 10; String str String. valueOf(a); 4.当字符串和其他类型进行相加的时候,结果就是字符串。(不完全…...
非人工智能专业怎样从零开始学人工智能?
人工智能(Artificial Intelligence,AI)是指让机器具有类似人类智能的能力,包括感知、理解、推理、学习、规划、决策、创造等多个方面。人工智能研究涉及到计算机科学、数学、物理学、心理学、哲学等多个领域,旨在模拟和…...
MyBatis之增、删、查、改
目录 前言 一、配置MyBatis开发环境 1.1 创建数据库和表 1.2 添加框架支持 1.3 创建目录结构 1.4 配置数据库连接 1.5 配置MyBatis中的XML文件路径 二、添加业务代码 2.1 查询数据库操作 2.1.1 添加实体类 2.1.2 添加mapper接口 2.1.3 在xml中实现mapper接口 2.1.…...
死磕Spring,什么是SPI机制,对SpringBoot自动装配有什么帮助
文章目录如果没时间看的话,在这里直接看总结一、Java SPI的概念和术语二、看看Java SPI是如何诞生的三、Java SPI应该如何应用四、从0开始,手撸一个SPI的应用实例五、SpringBoot自动装配六、Spring SPI机制与Spring Factories机制做对比七、这里是给我自…...
因果推断10--一种大规模预算约束因果森林算法(LBCF)
论文:A large Budget-Constrained Causal Forest Algorithm 论文:http://export.arxiv.org/pdf/2201.12585v2.pdf 目录 0 摘要 1 介绍 2 问题的制定 3策略评价 4 方法 4.1现有方法的局限性。 4.2提出的LBCF算法 5验证 5.1合成数据 5.2离线生…...
第19节 Node.js Express 框架
Express 是一个为Node.js设计的web开发框架,它基于nodejs平台。 Express 简介 Express是一个简洁而灵活的node.js Web应用框架, 提供了一系列强大特性帮助你创建各种Web应用,和丰富的HTTP工具。 使用Express可以快速地搭建一个完整功能的网站。 Expre…...
Ubuntu系统下交叉编译openssl
一、参考资料 OpenSSL&&libcurl库的交叉编译 - hesetone - 博客园 二、准备工作 1. 编译环境 宿主机:Ubuntu 20.04.6 LTSHost:ARM32位交叉编译器:arm-linux-gnueabihf-gcc-11.1.0 2. 设置交叉编译工具链 在交叉编译之前&#x…...
苍穹外卖--缓存菜品
1.问题说明 用户端小程序展示的菜品数据都是通过查询数据库获得,如果用户端访问量比较大,数据库访问压力随之增大 2.实现思路 通过Redis来缓存菜品数据,减少数据库查询操作。 缓存逻辑分析: ①每个分类下的菜品保持一份缓存数据…...
Linux云原生安全:零信任架构与机密计算
Linux云原生安全:零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言:云原生安全的范式革命 随着云原生技术的普及,安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测,到2025年,零信任架构将成为超…...
使用 SymPy 进行向量和矩阵的高级操作
在科学计算和工程领域,向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能,能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作,并通过具体…...
基于Java+MySQL实现(GUI)客户管理系统
客户资料管理系统的设计与实现 第一章 需求分析 1.1 需求总体介绍 本项目为了方便维护客户信息为了方便维护客户信息,对客户进行统一管理,可以把所有客户信息录入系统,进行维护和统计功能。可通过文件的方式保存相关录入数据,对…...
C#中的CLR属性、依赖属性与附加属性
CLR属性的主要特征 封装性: 隐藏字段的实现细节 提供对字段的受控访问 访问控制: 可单独设置get/set访问器的可见性 可创建只读或只写属性 计算属性: 可以在getter中执行计算逻辑 不需要直接对应一个字段 验证逻辑: 可以…...
基于IDIG-GAN的小样本电机轴承故障诊断
目录 🔍 核心问题 一、IDIG-GAN模型原理 1. 整体架构 2. 核心创新点 (1) 梯度归一化(Gradient Normalization) (2) 判别器梯度间隙正则化(Discriminator Gradient Gap Regularization) (3) 自注意力机制(Self-Attention) 3. 完整损失函数 二…...
【LeetCode】3309. 连接二进制表示可形成的最大数值(递归|回溯|位运算)
LeetCode 3309. 连接二进制表示可形成的最大数值(中等) 题目描述解题思路Java代码 题目描述 题目链接:LeetCode 3309. 连接二进制表示可形成的最大数值(中等) 给你一个长度为 3 的整数数组 nums。 现以某种顺序 连接…...
LangFlow技术架构分析
🔧 LangFlow 的可视化技术栈 前端节点编辑器 底层框架:基于 (一个现代化的 React 节点绘图库) 功能: 拖拽式构建 LangGraph 状态机 实时连线定义节点依赖关系 可视化调试循环和分支逻辑 与 LangGraph 的深…...
