条件期望4
条件期望例题----快排算法的分析
快速排序算法的递归定义如下:
有n个数(n≥2n\geq 2n≥2), 一开始随机选取一个数xix_ixi, 并将xix_ixi和其他n-1个数进行比较, 记SiS_iSi为比xix_ixi小的元素构成的集合, Siˉ\bar{S_i}Siˉ为比xix_ixi大的元素构成的集合, 然后分别对SiS_iSi和Siˉ\bar{S_i}Siˉ进行排序.
如果集合中元素个数等于2, 则简单比较即可, 如果大于2, 则重复上述过程.
我们选取整个排序过程中的比较次数的期望作为算法效率分析的指标. 记MnM_nMn为在n个不同元素的集合中, 实行快速排序算法所需要的比较次数的均值, 易知M0=M1=0,M2=0.5M_0 = M_1 = 0, M_2 = 0.5M0=M1=0,M2=0.5.
易知
Mn=∑j=1nE[比较次数∣初始随机取的元素为集合中的第j个值]1nM_n = \sum_{j=1}^nE[比较次数|初始随机取的元素为集合中的第j个值]\frac{1}{n} Mn=j=1∑nE[比较次数∣初始随机取的元素为集合中的第j个值]n1
如果初始选的值是所有元素中第jjj小的, 则对应的SSS集合就有j−1j-1j−1个元素, Sˉ\bar{S}Sˉ就有n-j个元素, 因为第一次选取之后一定会比较n−1n-1n−1次, 所以可得
Mn=∑j=1n(n−1+Mj−1+Mn−j)1n=n−1+1n∑k=1n−1Mk+1n∑m=n−11Mm=n−1+2n∑k=1n−1Mk\begin{split} M_n &= \sum_{j=1}^n(n-1 + M_{j-1} + M_{n-j})\frac{1}{n} \\ &=n-1 + \frac{1}{n}\sum_{k=1}^{n-1}M_k + \frac{1}{n}\sum_{m=n-1}^{1}M_m \\ &=n-1 + \frac{2}{n}\sum_{k=1}^{n-1}M_k \end{split} Mn=j=1∑n(n−1+Mj−1+Mn−j)n1=n−1+n1k=1∑n−1Mk+n1m=n−1∑1Mm=n−1+n2k=1∑n−1Mk
所以
nMn=n(n−1)+2∑k=1n−1MknM_n = n(n-1) + 2\sum_{k=1}^{n-1}M_k nMn=n(n−1)+2k=1∑n−1Mk
易知
(n+1)Mn+1=n(n+1)+2∑k=1nMk(n+1)M_{n+1} = n(n+1) + 2\sum_{k=1}^{n}M_k (n+1)Mn+1=n(n+1)+2k=1∑nMk
所以
(n+1)Mn+1−nMn=n(n−1)=2n+2Mn(n+1)M_{n+1} - nM_n = n(n-1) = 2n+2M_n (n+1)Mn+1−nMn=n(n−1)=2n+2Mn
即
(n+1)Mn+1=2n+(n+2)Mn(n+1)M_{n+1} = 2n+(n+2)M_n (n+1)Mn+1=2n+(n+2)Mn
所以
Mn+1=2nn+1+n+2n+1MnM_{n+1} = \frac{2n}{n+1} + \frac{n+2}{n+1}M_n Mn+1=n+12n+n+1n+2Mn
两边同除以(n+2)(n+2)(n+2), 有
Mn+1n+2=2n(n+1)(n+2)+Mnn+1\frac{M_{n+1}}{n+2} = \frac{2n}{(n+1)(n+2)} + \frac{M_n}{n+1} n+2Mn+1=(n+1)(n+2)2n+n+1Mn
迭代这个过程, 有
Mn+1n+2=2n(n+1)(n+2)+(2(n−1)n(n+1)+Mn−1n)=⋯=2∑k=0n−1n−k(n+1−k)(n+2−k)(M1=0)\begin{split} \frac{M_{n+1}}{n+2} &= \frac{2n}{(n+1)(n+2)} + \left(\frac{2(n-1)}{n(n+1)} + \frac{M_{n-1}}{n} \right) \\ &=\cdots \\ &=2\sum_{k=0}^{n-1}\frac{n-k}{(n+1-k)(n+2-k)} \\ &(M_1 = 0) \end{split} n+2Mn+1=(n+1)(n+2)2n+(n(n+1)2(n−1)+nMn−1)=⋯=2k=0∑n−1(n+1−k)(n+2−k)n−k(M1=0)
所以
Mn+1=2(n+2)∑i=1ni(i+1)(i+2)(i=n−k)=2(n+2)[∑i=1n2i+2−∑i=1n1i+1]≈2(n+2)[∫3n+22xdx−∫2n+11xdx](步长为1的数值积分)≈2(n+2)ln(n+2)\begin{split} M_{n+1} &= 2(n+2)\sum_{i=1}^{n}\frac{i}{(i+1)(i+2)} \\ &(i = n-k) \\ &=2(n+2)\left[\sum_{i=1}^{n}\frac{2}{i+2} - \sum_{i=1}^{n}\frac{1}{i+1} \right] \\ &\approx 2(n+2)\left[ \int_3^{n+2}\frac{2}{x}dx - \int_2^{n+1}\frac{1}{x}dx\right] \\ &(步长为1的数值积分) \\ &\approx 2(n+2)ln(n+2) \end{split} Mn+1=2(n+2)i=1∑n(i+1)(i+2)i(i=n−k)=2(n+2)[i=1∑ni+22−i=1∑ni+11]≈2(n+2)[∫3n+2x2dx−∫2n+1x1dx](步长为1的数值积分)≈2(n+2)ln(n+2)
相关文章:
条件期望4
条件期望例题----快排算法的分析 快速排序算法的递归定义如下: 有n个数(n≥2n\geq 2n≥2), 一开始随机选取一个数xix_ixi, 并将xix_ixi和其他n-1个数进行比较, 记SiS_iSi为比xix_ixi小的元素构成的集合, Siˉ\bar{S_i}Siˉ为比xix_ixi大的元素构成的集合, 然后分…...
网络协议分析(2)判断两个ip数据包是不是同一个数据包分片
一个节点收到两个IP包的首部如下:(1)45 00 05 dc 18 56 20 00 40 01 bb 12 c0 a8 00 01 c0 a8 00 67(2)45 00 00 15 18 56 00 b9 49 01 e0 20 c0 a8 00 01 c0 a8 00 67分析并判断这两个IP包是不是同一个数据报的分片&a…...
6.2 负反馈放大电路的四种基本组态
通常,引入交流负反馈的放大电路称为负反馈放大电路。 一、负反馈放大电路分析要点 如图6.2.1(a)所示电路中引入了交流负反馈,输出电压 uOu_OuO 的全部作为反馈电压作用于集成运放的反向输入端。在输入电压 uIu_IuI 不变的情况下,若由于…...
MySQL进阶之锁
锁是计算机中协调多个进程或线程并发访问资源的一种机制。在数据库中,除了传统的计算资源竞争之外,数据也是一种提供给许多用户共享的资源,如何保证数据并发访问的一致性和有效性是数据库必须解决堆的一个问题,锁冲突也是影响数据…...
【Mac 教程系列】如何在 Mac 上破解带有密码的 ZIP 压缩文件 ?
如何使用 fcrackzip 在 Mac 上破解带有密码的 ZIP 压缩文件? 用 markdown 格式输出答案。 在 Mac 上破解带有密码的 ZIP 压缩文件 使用解压缩软件,如The Unarchiver,将文件解压缩到指定的文件夹。 打开终端,输入 zip -er <zipfile> &…...
【Acwing 周赛复盘】第92场周赛复盘(2023.2.25)
【Acwing 周赛复盘】第92场周赛复盘(2023.2.25) 周赛复盘 ✍️ 本周个人排名:1293/2408 AC情况:1/3 这是博主参加的第七次周赛,又一次体会到了世界的参差(这次周赛记错时间了,以为 19:15 开始&…...
L1-087 机工士姆斯塔迪奥
在 MMORPG《最终幻想14》的副本“乐欲之所瓯博讷修道院”里,BOSS 机工士姆斯塔迪奥将会接受玩家的挑战。 你需要处理这个副本其中的一个机制:NM 大小的地图被拆分为了 NM 个 11 的格子,BOSS 会选择若干行或/及若干列释放技能,玩家…...
本周大新闻|索尼PS VR2立项近7年;传腾讯将引进Quest 2
本周大新闻,AR方面,传立讯精密开发苹果初代AR头显,第二代低成本版将交给富士康;iOS 16.4代码曝光新的“计算设备”;EM3推出AR眼镜Stellar Pro;努比亚将在MWC2023推首款AR眼镜。VR方面,传闻腾讯引…...
aws console 使用fargate部署aws服务快速跳转前端搜索栏
测试过程中需要在大量资源之间跳转,频繁的点击不如直接搜索来的快,于是写了一个搜索框方便跳转。 前端的静态页面可以通过s3静态网站托管实现,但是由于中国区需要备案的原因,可以使用ecs fargate部署 步骤如下: 编写…...
Redis实战之Redisson使用技巧详解
一、摘要什么是 Redisson?来自于官网上的描述内容如下!Redisson 是一个在 Redis 的基础上实现的 Java 驻内存数据网格客户端(In-Memory Data Grid)。它不仅提供了一系列的 redis 常用数据结构命令服务,还提供了许多分布…...
SQLAlchemy
文章目录SQLAlchemy介绍SQLAlchemy入门使用原生sql使用orm外键关系一对多关系多对多关系基于scoped_session实现线程安全简单表操作实现方案CRUDFlask 集成 sqlalchemySQLAlchemy 介绍 SQLAlchemy是一个基于Python实现的ORM框架。该框架建立在 DB API之上,使用关系…...
【Linux学习笔记】8.Linux yum 命令和apt 命令
前言 本章介绍Linux的yum命令和apt命令。 Linux yum 命令 yum( Yellow dog Updater, Modified)是一个在 Fedora 和 RedHat 以及 SUSE 中的 Shell 前端软件包管理器。 基于 RPM 包管理,能够从指定的服务器自动下载 RPM 包并且安装…...
windows服务器实用(4)——使用IIS部署网站
windows服务器实用——IIS部署网站 如果把windows服务器作为web服务器使用,那么在这个服务器上部署网站是必须要做的事。在windows服务器上,我们一般使用IIS部署。 假设此时前端给你一个已经完成的网站让你部署在服务器上,别人可以在浏览器…...
Random(二)什么是伪共享?@sun.misc.Contended注解
目录1.背景简介2.伪共享问题3.问题解决4.JDK使用示例1.背景简介 我们知道,CPU 是不能直接访问内存的,数据都是从高速缓存中加载到寄存器的,高速缓存又有 L1,L2,L3 等层级。在这里,我们先简化这些复杂的层级…...
Linux解压压缩
打包tar首先我们得提一下专门用于打包文件的命令——tartar用于备份文件,打包多个文件或者目录,也可以用于还原被打包的文件假设打包目录test下的文件 tar -cvf test.tar ./test 假设打包目录test下的文件,并用gzip命令将包压缩 tar -zcvf test.tar ./te…...
JavaSe第3次笔记
1.String str "hello";字符串类型。 2.两个字符串类型相加意思是拼接,类似于c语言里面的strcat函数。 3.整型变成字符串类型: int a 10; String str String. valueOf(a); 4.当字符串和其他类型进行相加的时候,结果就是字符串。(不完全…...
非人工智能专业怎样从零开始学人工智能?
人工智能(Artificial Intelligence,AI)是指让机器具有类似人类智能的能力,包括感知、理解、推理、学习、规划、决策、创造等多个方面。人工智能研究涉及到计算机科学、数学、物理学、心理学、哲学等多个领域,旨在模拟和…...
MyBatis之增、删、查、改
目录 前言 一、配置MyBatis开发环境 1.1 创建数据库和表 1.2 添加框架支持 1.3 创建目录结构 1.4 配置数据库连接 1.5 配置MyBatis中的XML文件路径 二、添加业务代码 2.1 查询数据库操作 2.1.1 添加实体类 2.1.2 添加mapper接口 2.1.3 在xml中实现mapper接口 2.1.…...
死磕Spring,什么是SPI机制,对SpringBoot自动装配有什么帮助
文章目录如果没时间看的话,在这里直接看总结一、Java SPI的概念和术语二、看看Java SPI是如何诞生的三、Java SPI应该如何应用四、从0开始,手撸一个SPI的应用实例五、SpringBoot自动装配六、Spring SPI机制与Spring Factories机制做对比七、这里是给我自…...
因果推断10--一种大规模预算约束因果森林算法(LBCF)
论文:A large Budget-Constrained Causal Forest Algorithm 论文:http://export.arxiv.org/pdf/2201.12585v2.pdf 目录 0 摘要 1 介绍 2 问题的制定 3策略评价 4 方法 4.1现有方法的局限性。 4.2提出的LBCF算法 5验证 5.1合成数据 5.2离线生…...
VB.net复制Ntag213卡写入UID
本示例使用的发卡器:https://item.taobao.com/item.htm?ftt&id615391857885 一、读取旧Ntag卡的UID和数据 Private Sub Button15_Click(sender As Object, e As EventArgs) Handles Button15.Click轻松读卡技术支持:网站:Dim i, j As IntegerDim cardidhex, …...
8k长序列建模,蛋白质语言模型Prot42仅利用目标蛋白序列即可生成高亲和力结合剂
蛋白质结合剂(如抗体、抑制肽)在疾病诊断、成像分析及靶向药物递送等关键场景中发挥着不可替代的作用。传统上,高特异性蛋白质结合剂的开发高度依赖噬菌体展示、定向进化等实验技术,但这类方法普遍面临资源消耗巨大、研发周期冗长…...
Go 语言接口详解
Go 语言接口详解 核心概念 接口定义 在 Go 语言中,接口是一种抽象类型,它定义了一组方法的集合: // 定义接口 type Shape interface {Area() float64Perimeter() float64 } 接口实现 Go 接口的实现是隐式的: // 矩形结构体…...
基础测试工具使用经验
背景 vtune,perf, nsight system等基础测试工具,都是用过的,但是没有记录,都逐渐忘了。所以写这篇博客总结记录一下,只要以后发现新的用法,就记得来编辑补充一下 perf 比较基础的用法: 先改这…...
Java多线程实现之Callable接口深度解析
Java多线程实现之Callable接口深度解析 一、Callable接口概述1.1 接口定义1.2 与Runnable接口的对比1.3 Future接口与FutureTask类 二、Callable接口的基本使用方法2.1 传统方式实现Callable接口2.2 使用Lambda表达式简化Callable实现2.3 使用FutureTask类执行Callable任务 三、…...
关于 WASM:1. WASM 基础原理
一、WASM 简介 1.1 WebAssembly 是什么? WebAssembly(WASM) 是一种能在现代浏览器中高效运行的二进制指令格式,它不是传统的编程语言,而是一种 低级字节码格式,可由高级语言(如 C、C、Rust&am…...
Java数值运算常见陷阱与规避方法
整数除法中的舍入问题 问题现象 当开发者预期进行浮点除法却误用整数除法时,会出现小数部分被截断的情况。典型错误模式如下: void process(int value) {double half = value / 2; // 整数除法导致截断// 使用half变量 }此时...
【 java 虚拟机知识 第一篇 】
目录 1.内存模型 1.1.JVM内存模型的介绍 1.2.堆和栈的区别 1.3.栈的存储细节 1.4.堆的部分 1.5.程序计数器的作用 1.6.方法区的内容 1.7.字符串池 1.8.引用类型 1.9.内存泄漏与内存溢出 1.10.会出现内存溢出的结构 1.内存模型 1.1.JVM内存模型的介绍 内存模型主要分…...
HybridVLA——让单一LLM同时具备扩散和自回归动作预测能力:训练时既扩散也回归,但推理时则扩散
前言 如上一篇文章《dexcap升级版之DexWild》中的前言部分所说,在叠衣服的过程中,我会带着团队对比各种模型、方法、策略,毕竟针对各个场景始终寻找更优的解决方案,是我个人和我司「七月在线」的职责之一 且个人认为,…...
DeepSeek源码深度解析 × 华为仓颉语言编程精粹——从MoE架构到全场景开发生态
前言 在人工智能技术飞速发展的今天,深度学习与大模型技术已成为推动行业变革的核心驱动力,而高效、灵活的开发工具与编程语言则为技术创新提供了重要支撑。本书以两大前沿技术领域为核心,系统性地呈现了两部深度技术著作的精华:…...
