当前位置: 首页 > news >正文

OpenCV 画极线


from pylab import *
import cv2from backend._gs_ import stereo_cameradef compute_epipole(F):""" 从基础矩阵 F 中计算右极点(可以使用 F.T 获得左极点)"""# 返回 F 的零空间(Fx=0)U,S,V = np.linalg.svd(F)e = V[-1]return e/e[2]def plot_epipolar_line(im, F, x, epipole=None, show_epipole=True):""" 在图像中,绘制外极点和外极线 F×x=0。F 是基础矩阵,x 是另一幅图像中的点 """m, n = im.shape[:2]line = np.dot(F, x)# 外极线参数和值t = np.linspace(0, n, 100)lt = np.array([(line[2] + line[0] * tt) / (-line[1]) for tt in t])# 仅仅处理位于图像内部的点和线ndx = (lt >= 0) & (lt < m)plot(t[ndx], lt[ndx], linewidth=2)if show_epipole:if epipole is None:epipole = compute_epipole(F)plot(epipole[0] / epipole[2], epipole[1] / epipole[2], 'r*')F = stereo_camera.F
im1 = cv2.imread(r'D:\mydocs\ftp\stereo_test\stereo_cali\small_test1\75_1.png')
im2 = cv2.imread(r'D:\mydocs\ftp\stereo_test\stereo_cali\small_test1\89_1.png')
x2 = np.array([ [1422, 1490, 1486], [1082,1183,1074], [1,1,1]])
# 计算极点
e = compute_epipole(F)# 绘制图像
figure()subplot(121)
imshow(im1)
# 分别绘制每个点,这样会绘制出和线同样的颜色
for i in range(3):plot(x2[0, i], x2[1, i], 'o')
title(u'outer polar')
axis('off')subplot(122)
imshow(im2)
# 分别绘制每条线,这样会绘制出很漂亮的颜色
for i in range(3):plot_epipolar_line(im2, F, x2[:, i], e, False)
title(u'outer polar')
axis('off')show()

相关文章:

OpenCV 画极线

from pylab import * import cv2from backend._gs_ import stereo_cameradef compute_epipole(F):""" 从基础矩阵 F 中计算右极点(可以使用 F.T 获得左极点)"""# 返回 F 的零空间(Fx0)U,S,V np.linalg.svd(F)e V[-1]return e/e[2]def plot_epi…...

Linux命令(109)之md5sum

linux命令之md5sum 1.md5sum介绍 linux命令md5sum是用来计算和校验文件的MD5值。 另外&#xff1a; md5sum是用来校验文件内容&#xff0c;与文件名是否相同无关 md5sum校验文件时&#xff0c;逐位校验&#xff0c;如果文件越大&#xff0c;校验所需时间就越长 2.md5sum用…...

JavaEE入门介绍,HTTP协议介绍,常用状态码及含义,服务器介绍(软件服务器、云服务器)

一、JavaEE入门 JavaEE&#xff08;Java Enterprise Edition&#xff09;&#xff0c;Java企业版&#xff0c;是一个用于企业级web开发&#xff08;不需要使用控制台&#xff09;平台。最早由Sun公司定制并发布&#xff0c;后由Oracle负责维护。 JavaEE平台规范了在开发企业级w…...

FPGA时序分析与约束(7)——通过Tcl扩展SDC

一、概述 术语“Synopsys公司设计约束”&#xff08;又名SDC&#xff0c;Synopsys Design Constraints&#xff09;用于描述对时序、功率和面积的设计要求&#xff0c;是EDA工具中用于综合、STA和布局布线最常用的格式。本文介绍时序约束的历史概要和SDC的描述。 二、时序约束…...

C++面试——多线程详解

C11提供了语言层面上的多线程&#xff0c;包含在头文件<thread>中。它解决了跨平台的问题&#xff0c;提供了管理线程、保护共享数据、线程间同步操作、原子操作等类。C11 新标准中引入了5个头文件来支持多线程编程&#xff0c;如下图所示&#xff1a; 多进程与多线程 多…...

matlab 布尔莎七参数坐标转换模型

目录 一、算法原理二、代码实现三、结果展示本文由CSDN点云侠原创,原文链接。爬虫自重,把自己当个人。 一、算法原理 算法原理与实现代码已在免费文章:布尔莎七参数坐标转换模型一文中给出,不想看付费文章直接跳转即可。 二、代码实现 clc; clear; close all; %% --...

Android---StartActivity启动过程

在手机桌面应用中点击某一个 icon 之后&#xff0c;最终是通过 startActivity 去打开某一个 Activity 页面。我们知道&#xff0c;Android 中的一个 APP 就相当于一个进程。所以&#xff0c;startActivity 操作中还需要判断&#xff0c;目标 Activity 的进程是否已经创建。如果…...

隐私计算python实现Paillier同态加密

1.基本概念 Paillier同态加密是一种公钥加密方案&#xff0c;具有同态加密的特性。它由Pascal Paillier于1999年提出。 Paillier同态加密基于数论问题&#xff0c;其安全性基于大整数分解问题和离散对数问题的困难性。该方案可以用于保护隐私数据&#xff0c;同时支持在加密状态…...

代码随想录打卡第五十五天|● 300.最长递增子序列 ● 674. 最长连续递增序列 ● 718. 最长重复子数组

300.最长递增子序列 **题目&#xff1a;**给你一个整数数组 nums &#xff0c;找到其中最长严格递增子序列的长度。子序列 是由数组派生而来的序列&#xff0c;删除&#xff08;或不删除&#xff09;数组中的元素而不改变其余元素的顺序。例如&#xff0c;[3,6,2,7] 是数组 [0…...

C# 创建Oceanbase ODBC数据源 DSN

需要管理员权限打开VS&#xff0c;因为只有管理员权限可以修改注册表 using Microsoft.Win32; using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; using System.Data.Odbc; using System.Diagnostics; using System.Drawing;…...

C++ 常用函数汇总#include<algorithm>(3万字总结)

文章目录 1. 排序(Sorting)1.1 sort(first, last):对指定范围内的元素进行升序排序1.2 stable_sort(first, last):在保持相等元素的相对顺序的情况下对指定范围内的元素进行排序1.3 partial_sort(first, middle, last):对范围内的元素进行部分排序,使得前部分是最小的,但…...

Google Archive Patch 基础应用代码记录

项目地址 Google Archive Patch 前置 <!-- 差量应用模块 --> <dependency><groupId>com.google.archivepatcher</groupId><artifactId>archive-patch-applier</artifactId><version>1.0.4</version><scope>test</…...

机器学习——代价敏感错误率与代价曲线

文章目录 代价敏感错误率实现代价曲线例子 代价敏感错误率 指在分类问题中&#xff0c;不同类别的错误分类所造成的代价不同。在某些应用场景下&#xff0c;不同类别的错误分类可能会产生不同的代价。例如&#xff0c;在医学诊断中&#xff0c;将疾病患者错误地分类为健康人可…...

如何利用 ChatGPT 提升编程技能

目录 前言代码命名与 ChatGPT设计模式与 ChatGPT代码重构与 ChatGPT代码优化与 ChatGPTChatGPT 的潜在挑战与限制成功案例分析最佳实践与注意事项结语 前言 编程是一项充满创造性和挑战的任务&#xff0c;但也是一个需要花费大量时间和精力的领域。在日益复杂的软件开发环境中…...

ChatGPT:@EqualsAndHashCode(callSuper = false)是什么意思

ChatGPT&#xff1a;EqualsAndHashCode(callSuper false)是什么意思 EqualsAndHashCode(callSuper false)是什么意思&#xff1f; ChatGPT&#xff1a; EqualsAndHashCode(callSuper false) 是 Java 中的 Lombok 注解&#xff0c;用于自动生成 equals() 和 hashCode() 方法…...

docker部署的mariadb忘记密码

docker 里的 mariadb 数据库密码忘了&#xff0c;如果以前我会选择直接干掉重装&#xff0c;但是数据怎么办&#xff1f; 1 数据量小 就跳过密码登录进去备份出来 2 想办法改掉密码 我直接选择后者&#xff0c;跳过密码&#xff0c;mariadb10.4以后不能直接改密码了&#xff…...

一体化模型图像去雨+图像去噪+图像去模糊(图像处理-图像复原-代码+部署运行教程)

本文主要讲述了一体化模型进行去噪、去雨、去模糊&#xff0c;也就是说&#xff0c;一个模型就可以完成上述三个任务。实现了良好的图像复原功能&#xff01; 先来看一下美女复原.jpg 具体的&#xff1a; 在图像恢复任务中&#xff0c;需要在恢复图像的过程中保持空间细节…...

[java/力扣110]平衡二叉树——优化前后的两种方法

分析 根据平衡二叉树的定义&#xff0c;只需要满足&#xff1a;1、根节点两个子树的高度差不超过1&#xff1b;2、左右子树都为平衡二叉树 代码 public class BalancedBinaryTree {public class TreeNode{int val;TreeNode left;TreeNode right;TreeNode(){}TreeNode(int va…...

吉他、班卓琴和贝斯吉他降分器:Arobas Music Guitar 8.1.1

Arobas Music Guitar 是一款专业的吉他、班卓琴和贝斯吉他降分器。在熟练的手中&#xff0c;它不仅可以让您创作&#xff0c;还可以编辑、聆听和录制&#xff0c;以及导入和导出乐谱。如果有人感兴趣的话&#xff0c;录音是在八个轨道上进行的&#xff0c;你可以为每个轨道单独…...

cocos tilemap的setTileGIDAt方法不实时更新

需要取消勾选 Enable Culling。同时代码添加&#xff1a;markForUpdateRenderData函数。 floor.setTileGIDAt(102427,newP.x,newP.y,0); //中心 floor.markForUpdateRenderData(); 具体问题参考官网说明&#xff1a; Cocos Creator 3.2 手册 - 项目设置...

第19节 Node.js Express 框架

Express 是一个为Node.js设计的web开发框架&#xff0c;它基于nodejs平台。 Express 简介 Express是一个简洁而灵活的node.js Web应用框架, 提供了一系列强大特性帮助你创建各种Web应用&#xff0c;和丰富的HTTP工具。 使用Express可以快速地搭建一个完整功能的网站。 Expre…...

安宝特方案丨XRSOP人员作业标准化管理平台:AR智慧点检验收套件

在选煤厂、化工厂、钢铁厂等过程生产型企业&#xff0c;其生产设备的运行效率和非计划停机对工业制造效益有较大影响。 随着企业自动化和智能化建设的推进&#xff0c;需提前预防假检、错检、漏检&#xff0c;推动智慧生产运维系统数据的流动和现场赋能应用。同时&#xff0c;…...

Qt Widget类解析与代码注释

#include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this); }Widget::~Widget() {delete ui; }//解释这串代码&#xff0c;写上注释 当然可以&#xff01;这段代码是 Qt …...

DAY 47

三、通道注意力 3.1 通道注意力的定义 # 新增&#xff1a;通道注意力模块&#xff08;SE模块&#xff09; class ChannelAttention(nn.Module):"""通道注意力模块(Squeeze-and-Excitation)"""def __init__(self, in_channels, reduction_rat…...

dedecms 织梦自定义表单留言增加ajax验证码功能

增加ajax功能模块&#xff0c;用户不点击提交按钮&#xff0c;只要输入框失去焦点&#xff0c;就会提前提示验证码是否正确。 一&#xff0c;模板上增加验证码 <input name"vdcode"id"vdcode" placeholder"请输入验证码" type"text&quo…...

最新SpringBoot+SpringCloud+Nacos微服务框架分享

文章目录 前言一、服务规划二、架构核心1.cloud的pom2.gateway的异常handler3.gateway的filter4、admin的pom5、admin的登录核心 三、code-helper分享总结 前言 最近有个活蛮赶的&#xff0c;根据Excel列的需求预估的工时直接打骨折&#xff0c;不要问我为什么&#xff0c;主要…...

现代密码学 | 椭圆曲线密码学—附py代码

Elliptic Curve Cryptography 椭圆曲线密码学&#xff08;ECC&#xff09;是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础&#xff0c;例如椭圆曲线数字签…...

Angular微前端架构:Module Federation + ngx-build-plus (Webpack)

以下是一个完整的 Angular 微前端示例&#xff0c;其中使用的是 Module Federation 和 npx-build-plus 实现了主应用&#xff08;Shell&#xff09;与子应用&#xff08;Remote&#xff09;的集成。 &#x1f6e0;️ 项目结构 angular-mf/ ├── shell-app/ # 主应用&…...

毫米波雷达基础理论(3D+4D)

3D、4D毫米波雷达基础知识及厂商选型 PreView : https://mp.weixin.qq.com/s/bQkju4r6med7I3TBGJI_bQ 1. FMCW毫米波雷达基础知识 主要参考博文&#xff1a; 一文入门汽车毫米波雷达基本原理 &#xff1a;https://mp.weixin.qq.com/s/_EN7A5lKcz2Eh8dLnjE19w 毫米波雷达基础…...

Python竞赛环境搭建全攻略

Python环境搭建竞赛技术文章大纲 竞赛背景与意义 竞赛的目的与价值Python在竞赛中的应用场景环境搭建对竞赛效率的影响 竞赛环境需求分析 常见竞赛类型&#xff08;算法、数据分析、机器学习等&#xff09;不同竞赛对Python版本及库的要求硬件与操作系统的兼容性问题 Pyth…...