当前位置: 首页 > news >正文

CentOS 安装 Hadoop Local (Standalone) Mode 单机模式

CentOS 安装 Hadoop Local (Standalone) Mode 单机模式

Hadoop Local (Standalone) Mode 单机模式

1. 修改yum源 并升级内核和软件

curl -o /etc/yum.repos.d/CentOS-Base.repo https://mirrors.aliyun.com/repo/Centos-7.repo
yum clean all
yum makecache
yum -y update

2. 安装常用软件

yum -y install gcc gcc-c++ autoconf automake cmake make \zlib zlib-devel openssl openssl-devel pcre-devel \rsync openssh-server vim man zip unzip net-tools tcpdump lrzsz tar wget

3. 关闭防火墙

sed -i 's/SELINUX=enforcing/SELINUX=disabled/g' /etc/selinux/config
setenforce 0
systemctl stop firewalld
systemctl disable firewalld

4. 修改主机名和IP地址

hostnamectl set-hostname hadoop
vim /etc/sysconfig/network-scripts/ifcfg-ens32

参考如下:

TYPE="Ethernet"
PROXY_METHOD="none"
BROWSER_ONLY="no"
BOOTPROTO="none"
DEFROUTE="yes"
IPV4_FAILURE_FATAL="no"
IPV6INIT="yes"
IPV6_AUTOCONF="yes"
IPV6_DEFROUTE="yes"
IPV6_FAILURE_FATAL="no"
IPV6_ADDR_GEN_MODE="stable-privacy"
NAME="ens32"
UUID="61b382ca-cdf2-47dc-b9b4-01ea57c805d7"
DEVICE="ens32"
ONBOOT="yes"
IPADDR="192.168.171.10"
PREFIX="24"
GATEWAY="192.168.171.2"
DNS1="192.168.171.2"
IPV6_PRIVACY="no"

5. 修改hosts配置文件

vim /etc/hosts

修改内容如下:

192.168.171.10	hadoop

重启系统

reboot

6. 下载安装JDK和Hadoop并配置环境变量

创建软件目录

mkdir -p /opt/soft 

进入软件目录

cd /opt/soft

下载 JDK

wget https://download.oracle.com/otn/java/jdk/8u391-b13/b291ca3e0c8548b5a51d5a5f50063037/jdk-8u391-linux-x64.tar.gz?AuthParam=1698206552_11c0bb831efdf87adfd187b0e4ccf970

下载 hadoop

wget https://dlcdn.apache.org/hadoop/common/hadoop-3.3.5/hadoop-3.3.5.tar.gz

解压 JDK 修改名称

tar -zxvf jdk-8u391-linux-x64.tar.gz -C /opt/soft/
mv jdk1.8.0_391/ jdk-8

解压 hadoop 修改名称

tar -zxvf hadoop-3.3.5.tar.gz -C /opt/soft/
mv hadoop-3.3.5/ hadoop-3

配置环境变量

vim /etc/profile.d/my_env.sh

编写以下内容:

export JAVA_HOME=/opt/soft/jdk-8
export set JAVA_OPTS="--add-opens java.base/java.lang=ALL-UNNAMED"export HDFS_NAMENODE_USER=root
export HDFS_SECONDARYNAMENODE_USER=root
export HDFS_DATANODE_USER=root
export HDFS_ZKFC_USER=root
export HDFS_JOURNALNODE_USER=rootexport YARN_RESOURCEMANAGER_USER=root
export YARN_NODEMANAGER_USER=rootexport HADOOP_HOME=/opt/soft/hadoop-3export PATH=$PATH:$JAVA_HOME/bin:$HADOOP_HOME/bin:$HADOOP_HOME/sbin

生成新的环境变量

source /etc/profile

7. 配置ssh免密钥登录

创建本地秘钥并将公共秘钥写入认证文件

ssh-keygen -t rsa -P '' -f ~/.ssh/id_rsa
ssh-copy-id root@hadoop
# 远程登录自己
ssh hadoop
# Are you sure you want to continue connecting (yes/no)? 此处输入yes
# 登录成功后exit或者logout返回
exit

8. 修改配置文件

hadoop-env.sh

core-site.xml

hdfs-site.xml

workers

mapred-site.xml

yarn-site.xml

hadoop-env.sh

hadoop-env.sh 文件末尾追加

export JAVA_HOME=/opt/soft/jdk-8
export set JAVA_OPTS="--add-opens java.base/java.lang=ALL-UNNAMED"export HDFS_NAMENODE_USER=root
export HDFS_SECONDARYNAMENODE_USER=root
export HDFS_DATANODE_USER=root
export HDFS_ZKFC_USER=root
export HDFS_JOURNALNODE_USER=rootexport YARN_RESOURCEMANAGER_USER=root
export YARN_NODEMANAGER_USER=root

core-site.xml

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration><property><name>fs.defaultFS</name><value>hdfs://hadoop:9000</value></property><property><name>hadoop.tmp.dir</name><value>/home/hadoop_data</value></property><property><name>hadoop.http.staticuser.user</name><value>root</value></property><property><name>dfs.permissions.enabled</name><value>false</value></property><property><name>hadoop.proxyuser.root.hosts</name><value>*</value></property><property><name>hadoop.proxyuser.root.groups</name><value>*</value></property>
</configuration>

hdfs.site.xml

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration><property><name>dfs.replication</name><value>1</value></property><property><name>dfs.namenode.secondary.http-address</name><value>hadoop:50090</value></property>
</configuration>

workers

注意:

​ hadoop2.x中该文件名为slaves

​ hadoop3.x中该文件名为workers

hadoop

mapred-site.xml

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration><property><name>mapreduce.framework.name</name><value>yarn</value></property><property><name>mapreduce.application.classpath</name><value>$HADOOP_MAPRED_HOME/share/hadoop/mapreduce/*:$HADOOP_MAPRED_HOME/share/hadoop/mapreduce/lib/*</value></property>
</configuration>

yarn-site.xml

<?xml version="1.0"?>
<configuration><property><name>yarn.nodemanager.aux-services</name><value>mapreduce_shuffle</value></property><property><name>yarn.nodemanager.env-whitelist</name><value>JAVA_HOME,HADOOP_COMMON_HOME,HADOOP_HDFS_HOME,HADOOP_CONF_DIR,CLASSPATH_PREPEND_DISTCACHE,HADOOP_YARN_HOME,HADOOP_HOME,PATH,LANG,TZ,HADOOP_MAPRED_HOME</value></property>
</configuration>

9. 初始化集群

# 格式化文件系统
hdfs namenode -format
# 启动 NameNode SecondaryNameNode DataNode 
start-dfs.sh
# 查看启动进程
jps
# 看到 DataNode SecondaryNameNode NameNode 三个进程代表启动成功
# 启动 ResourceManager daemon 和 NodeManager
start-yarn.sh
# 看到 DataNode NodeManager SecondaryNameNode NameNode ResourceManager 五个进程代表启动成功

重点提示:

# 关机之前 依关闭服务
stop-yarn.sh
stop-dfs.sh
# 开机后 依次开启服务
start-dfs.sh
start-yarn.sh

或者

# 关机之前关闭服务
stop-all.sh
# 开机后开启服务
start-all.sh
#jps 检查进程正常后开启胡哦关闭在再做其它操作

10. 修改windows下hosts文件

C:\Windows\System32\drivers\etc\hosts

追加以下内容:

192.168.171.10	hadoop
192.168.171.11	spark01
192.168.171.12	spark02
192.168.171.13	spark03

Windows11 注意 修改权限

C:\Windows\System32\drivers\etc\hosts
C:\Windows\System32\drivers\etc\hosts

11. 测试

浏览器访问: http://hadoop:9870

namenode

浏览器访问:http://hadoop:50090/

secondary namenode

浏览器访问:http://hadoop:8088

secondary namenode

11.1 测试 hdfs

本地文件系统创建 测试文件 wcdata.txt

vim wcdata.txt
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive

在 HDFS 上创建目录 /wordcount/input

hdfs dfs -mkdir -p /wordcount/input

查看 HDFS 目录结构

hdfs dfs -ls /
hdfs dfs -ls /wordcount
hdfs dfs -ls /wordcount/input

上传本地测试文件 wcdata.txt 到 HDFS 上 /wordcount/input

hdfs dfs -put wcdata.txt /wordcount/input

检查文件是否上传成功

hdfs dfs -ls /wordcount/input
hdfs dfs -cat /wordcount/input/wcdata.txt

11.2 测试 mapreduce

计算 PI 的值

hadoop jar $HADOOP_HOME/share/hadoop/mapreduce/hadoop-mapreduce-examples-3.3.5.jar pi 10 10

单词统计

hadoop jar $HADOOP_HOME/share/hadoop/mapreduce/hadoop-mapreduce-examples-3.3.5.jar wordcount /wordcount/input/wcdata.txt /wordcount/result
hdfs dfs -ls /wordcount/result
hdfs dfs -cat /wordcount/result/part-r-00000

相关文章:

CentOS 安装 Hadoop Local (Standalone) Mode 单机模式

CentOS 安装 Hadoop Local (Standalone) Mode 单机模式 Hadoop Local (Standalone) Mode 单机模式 1. 修改yum源 并升级内核和软件 curl -o /etc/yum.repos.d/CentOS-Base.repo https://mirrors.aliyun.com/repo/Centos-7.repoyum clean allyum makecacheyum -y update2. 安…...

jenkins工具系列 —— 删除Jenkins JOB后清理workspace

文章目录 问题现象分析解决思路脚本实现问题现象分析 Jenkins使用过程中,占用空间最大的两个位置: 1 、workspace: 工作空间,可以随便删除,删除后再次构建时间可能会比较长,因为要重新获取一些资源。 2 、job: 存放的是项目的配置、构建结果、日志等。不建议手动删除,…...

超越人眼,好用的OCR软件推荐

OCR技术&#xff08;Optical Character Recognition&#xff09;是一种将图像或扫描的文字转化为可编辑、搜索、存储、分享的文本的技术。OCR技术除了能够将纸质文档数字化&#xff0c;还可以将手写文本、印刷文本、数码照片中的文字等转化为电子文本。 以下是几个比较知名的O…...

Go语言开发网站

引言 随着互联网的迅速发展&#xff0c;网站已经成为人们获取各种信息和服务的主要途径。而开发一个高性能、可扩展的网站是一项挑战。Go语言作为一门现代化的编程语言&#xff0c;具有强大的并发能力和高效的性能&#xff0c;逐渐成为网站开发的首选语言之一。本文将介绍如何…...

第18章_MySQL8其它新特性

第18章_MySQL8其它新特性 讲师&#xff1a;尚硅谷-宋红康&#xff08;江湖人称&#xff1a;康师傅&#xff09; 官网&#xff1a;http://www.atguigu.com 1. MySQL8新特性概述 MySQL从5.7版本直接跳跃发布了8.0版本&#xff0c;可见这是一个令人兴奋的里程碑版本。MySQL 8版…...

Python爬虫实战(六)——使用代理IP批量下载高清小姐姐图片(附上完整源码)

文章目录 一、爬取目标二、实现效果三、准备工作四、代理IP4.1 代理IP是什么&#xff1f;4.2 代理IP的好处&#xff1f;4.3 获取代理IP4.4 Python获取代理IP 五、代理实战5.1 导入模块5.2 设置翻页5.3 获取图片链接5.4 下载图片5.5 调用主函数5.6 完整源码5.7 免费代理不够用怎…...

【操作系统】考研真题攻克与重点知识点剖析 - 第 1 篇:操作系统概述

前言 本文基础知识部分来自于b站&#xff1a;分享笔记的好人儿的思维导图与王道考研课程&#xff0c;感谢大佬的开源精神&#xff0c;习题来自老师划的重点以及考研真题。此前我尝试了完全使用Python或是结合大语言模型对考研真题进行数据清洗与可视化分析&#xff0c;本人技术…...

Mac删除照片快捷键ctrl加什么 Mac电脑如何批量删除照片

Mac电脑是很多人喜欢使用的电脑&#xff0c;它有着优美的设计、高效的性能和丰富的功能。如果你的Mac电脑上存储了很多不需要的照片&#xff0c;那么你可能会想要删除它们&#xff0c;以节省空间和提高速度。那么&#xff0c;Mac删除照片快捷键ctrl加什么呢&#xff1f;Mac电脑…...

数据安全认证:保护您的数据安全的关键步骤

随着信息技术的飞速发展&#xff0c;数据安全问题日益凸显。数据泄露、网络攻击等事件频发&#xff0c;给企业和个人带来极大的损失。因此&#xff0c;数据安全认证成为保护数据安全的重要措施。本文将探讨数据安全认证的重要性、认证流程和相关标准&#xff0c;以期帮助读者更…...

表白墙/留言墙 —— 初级SpringBoot项目,练手项目前后端开发(带完整源码) 全方位全步骤手把手教学

&#x1f9f8;欢迎来到dream_ready的博客&#xff0c;&#x1f4dc;相信你对这篇博客也感兴趣o (ˉ▽ˉ&#xff1b;) 用户登录前后端开发(一个简单完整的小项目)——SpringBoot与session验证&#xff08;带前后端源码&#xff09;全方位全流程超详细教程 目录 项目前端页面展…...

【海德教育】报考建筑八大员需要满足下列条件:

1 、初级(具备以下条塌氏件之一) ( 1 )本专业或相关专业中专以上学历竖陆。 ( 2 )从事本职业工作 2 年以上。 2 、中级(具备以下条件之一) ( 1 )本专业或相关专业大专以上学历。 ( 2 )连续从事本职业工作 4 年以上。 ( 3 )取得余衫顷本职业初级证书&#xff0c;从事本职业工作 …...

酷开科技,让家庭更有温度!

生活中总有一些瞬间&#xff0c;会让我们感到无比温暖和幸福。一个拥抱、一句问候、一杯热茶&#xff0c;都能让我们感受到家庭的温馨和关爱。酷开科技也用自己的方式为我们带来了独属于科技的温暖&#xff0c;通过全新的体验将消费者带进一个充满惊喜的世界&#xff0c;让消费…...

九州未来入选“2023边缘计算产业图谱”三大细分领域

10月26日&#xff0c;边缘计算社区正式发布《2023边缘计算产业图谱》&#xff0c;九州未来凭借深厚的技术积累、优秀的产品服务、完善的产品解决方案体系以及开源贡献&#xff0c;实力入选图谱——边缘计算平台、边缘计算开源、边缘云服务提供商三大细分领域&#xff0c;充分彰…...

centos ubantu IP一直变化,远程连接不上问题

文章目录 一、为什么IP地址会变1.主机DHCP导致 二、解决IP地址变化1.centos2.ubantu 总结 虚拟机能连接为互联网,但下一次启动IP地址再发生变化,无法使用ssh远程连接 一、为什么IP地址会变 1.主机DHCP导致 虚拟机系统(ubantu,centos…)启动后会向本地申请IP地址租约,租聘的I…...

多线程---JUC

文章目录 什么是JUC&#xff1f;Callable接口ReentrantLockReentrantLock VS synchronized 原子类线程池信号量SemaphoreCountDownLatch 什么是JUC&#xff1f; JUC是&#xff1a;java.util.concurrent这个包名的缩写。它里面包含了与并发相关&#xff0c;即与多线程相关的很多…...

事务隔离级别

隔离级别 概念理解 事务的概念 事务是数据库管理系统中的一个基本单位&#xff0c;它代表了一组数据库操作。 事务是一个不可分割的工作单元&#xff0c;要么全部成功执行&#xff0c;要么全部失败回滚。 事务的目标是确保数据库的一致性、隔离性、持久性和原子性&#xff…...

centos7安装配置及Linux常用命令

目录 一.centos7的安装 1.1centos7的简介 1.2步骤 ​编辑 1.3登录 ​编辑 1.4MobaXterm使用 二.Linux常用命令&模式 1.1 常用命令 1.2 三种模式 命令模式 编辑模式 末行模式 1.3 命令使用&换源 换源 1.4 拍照备份 一.centos7的安装 1.1centos7的简…...

C语言调用lua

C语言是一种非常流行的编程语言&#xff0c;而Lua是一种基于C语言开发的脚本语言。相信大家都知道&#xff0c;Lua可以使用C语言来扩展其功能&#xff0c;进而实现更复杂的功能。而在Lua的各种实现中&#xff0c;luajit也是其中一种非常流行的实现。在本篇博客中&#xff0c;我…...

算法通关村第十二关黄金挑战——最长公共前缀问题解析

大家好&#xff0c;我是怒码少年小码。 最长公共前缀 LeetCode 14&#xff1a;编写一个函数来查找字符串数组中的最长公共前缀。 如果不存在公共前缀&#xff0c;返回空字符串 “”。 示例&#xff1a; 输入&#xff1a;strs [“flower”,“flow”,“flight”]输出&#xff…...

Python运维学习Day02-subprocess/threading/psutil

文章目录 1. 检测网段在线主机2. 获取系统变量的模块 psutil 1. 检测网段在线主机 import subprocessdef checkIP(ip):cmd fping -n 1 -w 1 {ip}null open(nlll,modewb)status subprocess.call(cmd,shellTrue,stdoutnull,stderrnull)if status 0:print(f"主机[{ip}]在…...

中南大学无人机智能体的全面评估!BEDI:用于评估无人机上具身智能体的综合性基准测试

作者&#xff1a;Mingning Guo, Mengwei Wu, Jiarun He, Shaoxian Li, Haifeng Li, Chao Tao单位&#xff1a;中南大学地球科学与信息物理学院论文标题&#xff1a;BEDI: A Comprehensive Benchmark for Evaluating Embodied Agents on UAVs论文链接&#xff1a;https://arxiv.…...

Mybatis逆向工程,动态创建实体类、条件扩展类、Mapper接口、Mapper.xml映射文件

今天呢&#xff0c;博主的学习进度也是步入了Java Mybatis 框架&#xff0c;目前正在逐步杨帆旗航。 那么接下来就给大家出一期有关 Mybatis 逆向工程的教学&#xff0c;希望能对大家有所帮助&#xff0c;也特别欢迎大家指点不足之处&#xff0c;小生很乐意接受正确的建议&…...

UE5 学习系列(三)创建和移动物体

这篇博客是该系列的第三篇&#xff0c;是在之前两篇博客的基础上展开&#xff0c;主要介绍如何在操作界面中创建和拖动物体&#xff0c;这篇博客跟随的视频链接如下&#xff1a; B 站视频&#xff1a;s03-创建和移动物体 如果你不打算开之前的博客并且对UE5 比较熟的话按照以…...

linux 错误码总结

1,错误码的概念与作用 在Linux系统中,错误码是系统调用或库函数在执行失败时返回的特定数值,用于指示具体的错误类型。这些错误码通过全局变量errno来存储和传递,errno由操作系统维护,保存最近一次发生的错误信息。值得注意的是,errno的值在每次系统调用或函数调用失败时…...

PAN/FPN

import torch import torch.nn as nn import torch.nn.functional as F import mathclass LowResQueryHighResKVAttention(nn.Module):"""方案 1: 低分辨率特征 (Query) 查询高分辨率特征 (Key, Value).输出分辨率与低分辨率输入相同。"""def __…...

[ACTF2020 新生赛]Include 1(php://filter伪协议)

题目 做法 启动靶机&#xff0c;点进去 点进去 查看URL&#xff0c;有 ?fileflag.php说明存在文件包含&#xff0c;原理是php://filter 协议 当它与包含函数结合时&#xff0c;php://filter流会被当作php文件执行。 用php://filter加编码&#xff0c;能让PHP把文件内容…...

MinIO Docker 部署:仅开放一个端口

MinIO Docker 部署:仅开放一个端口 在实际的服务器部署中,出于安全和管理的考虑,我们可能只能开放一个端口。MinIO 是一个高性能的对象存储服务,支持 Docker 部署,但默认情况下它需要两个端口:一个是 API 端口(用于存储和访问数据),另一个是控制台端口(用于管理界面…...

Caliper 配置文件解析:fisco-bcos.json

config.yaml 文件 config.yaml 是 Caliper 的主配置文件,通常包含以下内容: test:name: fisco-bcos-test # 测试名称description: Performance test of FISCO-BCOS # 测试描述workers:type: local # 工作进程类型number: 5 # 工作进程数量monitor:type: - docker- pro…...

MySQL:分区的基本使用

目录 一、什么是分区二、有什么作用三、分类四、创建分区五、删除分区 一、什么是分区 MySQL 分区&#xff08;Partitioning&#xff09;是一种将单张表的数据逻辑上拆分成多个物理部分的技术。这些物理部分&#xff08;分区&#xff09;可以独立存储、管理和优化&#xff0c;…...

在 Visual Studio Code 中使用驭码 CodeRider 提升开发效率:以冒泡排序为例

目录 前言1 插件安装与配置1.1 安装驭码 CodeRider1.2 初始配置建议 2 示例代码&#xff1a;冒泡排序3 驭码 CodeRider 功能详解3.1 功能概览3.2 代码解释功能3.3 自动注释生成3.4 逻辑修改功能3.5 单元测试自动生成3.6 代码优化建议 4 驭码的实际应用建议5 常见问题与解决建议…...