【python数学建模】特征值与特征向量运用
1、求数列通项
(1)转化为求矩阵的幂次问题
例:求斐波那契数列的通项公式
已知斐波那契数列满足: F k + 2 = F k + 1 + F k F_{k+2}=F_{k+1}+F_{k} Fk+2=Fk+1+Fk
(a) 降阶:将二阶差分方程转化为一阶差分方程组
{ F k + 1 = F k + 1 F k + 2 = F k + 1 + F k \begin{cases} F_{k+1}=F_{k+1}\\ F_{k+2}=F_{k+1}+F_{k} \end{cases} {Fk+1=Fk+1Fk+2=Fk+1+Fk 写成矩阵形式: a k + 1 = A a k k = 0 , 1 , 2 , . . . a_{k+1}=Aa_{k}\ k=0,1,2,... ak+1=Aak k=0,1,2,...
其中 A = ( 0 1 1 1 ) , a k = ( F k F k + 1 ) , a 0 = ( 1 1 ) A=\left(\begin{matrix} 0&1\\1&1 \end{matrix}\right)\ , \ a_k=\left(\begin{matrix} F_k\\F_{k+1} \end{matrix}\right)\ , \ a_0=\left(\begin{matrix} 1\\1 \end{matrix}\right) A=(0111) , ak=(FkFk+1) , a0=(11)
推导得有: a k = A k a 0 a_k=A^ka_0 ak=Aka0
(b) 求矩阵的Jordan标准形
矩阵的特征方程为: λ 2 − λ − 1 \lambda^2-\lambda-1 λ2−λ−1,特征根为 1 ± 5 2 \frac{1\pm \sqrt5}{2} 21±5,特征向量为 , ( 1 ± 5 2 1 ) \ , \ \left(\begin{matrix} \frac{1\pm \sqrt5}{2}\\1 \end{matrix}\right) , (21±51),取特征向量为列向量构成矩阵 P P P
则有 A = P ( 1 + 5 2 0 0 1 − 5 2 ) P − 1 A=P\left(\begin{matrix} \frac{1+ \sqrt5}{2}&0\\0&\frac{1- \sqrt5}{2} \end{matrix}\right)P^{-1} A=P(21+50021−5)P−1
从而 a k = A k a 0 a_k=A^ka_0 ak=Aka0,斐波那契数列的通项公式为 a k a_k ak的第一行元素。
(c) python实现
import sympy as sp
sp.var('k',positive=True,integre=True)
a=sp.Matrix([[0,1],[1,1]])
val=a.eigenvals()
vec=a.eigenvects()
P,D=a.diagonalize()
ak=P@(D**k)@(P.inv())
F=ak@sp.Matrix([1,1])
print(sp.latex(sp.simplify(F[0])))
求出通项公式为: F k = 2 − k ( 2 ( 1 − 5 ) k + 5 ( 1 + 5 ) k + 3 ( 1 + 5 ) k ) 5 + 5 F^k=\frac{2^{- k} \left(2 \left(1 - \sqrt{5}\right)^{k} + \sqrt{5} \left(1 + \sqrt{5}\right)^{k} + 3 \left(1 + \sqrt{5}\right)^{k}\right)}{\sqrt{5} + 5} Fk=5+52−k(2(1−5)k+5(1+5)k+3(1+5)k)
取值:
f = sp.lambdify(k,F[0])
print(f(9))
(2)特征根法求通项
由于斐波那契数列的特征根是互异的,故可设通项为:
F k = c 1 ( 1 + 5 2 ) k + c 2 ( 1 − 5 2 ) k F_k=c_1(\frac{1+\sqrt5}{2})^k+c_2(\frac{1-\sqrt5}{2})^k Fk=c1(21+5)k+c2(21−5)k
代入初值条件求解上述二元一次方程: F 0 = F 1 = 1 F_0=F_1=1 F0=F1=1
{ c 1 + c 2 = 1 c 1 ( 1 + 5 2 ) + c 2 ( 1 − 5 2 ) = 1 \begin{cases} c_1+c_2=1\\ c_1(\frac{1+\sqrt5}{2})+c_2(\frac{1-\sqrt5}{2})=1 \end{cases} {c1+c2=1c1(21+5)+c2(21−5)=1
解得 { c 1 = 1 2 + 5 10 c 2 = 1 2 − 5 10 \begin{cases} c1=\frac{1}{2}+\frac{\sqrt5}{10}\\c2=\frac{1}{2}-\frac{\sqrt5}{10} \end{cases} {c1=21+105c2=21−105,从而得到通项公式。
python实现:
import sympy as sp
x=sp.symbols('x')
c=sp.symbols('c:2')
f=sp.Eq(x**2,x+1)
vals=list(sp.solveset(f))
eq1=c[0]+c[1]-1
eq2=c[0]*vals[0]+c[1]*vals[1]-1
s=sp.solve([eq1,eq2])
(3)利用rsolve函数求解有理系数单变量递推式
import sympy as sp
k=sp.symbols('k')
y=sp.Function('y')
f=y(k+2)-y(k+1)-y(k)
F=sp.rsolve(f,y(k),{y(0):1, y(1):1})
2、Leslie种群模型
3、Pagerank算法
相关文章:
【python数学建模】特征值与特征向量运用
1、求数列通项 (1)转化为求矩阵的幂次问题 例:求斐波那契数列的通项公式 已知斐波那契数列满足: F k 2 F k 1 F k F_{k2}F_{k1}F_{k} Fk2Fk1Fk (a) 降阶:将二阶差分方程转化为一阶…...
什么是 CNN? 卷积神经网络? 怎么用 CNN 进行分类?(1)
先看卷积是啥,url: https://www.bilibili.com/video/BV1JX4y1K7Dr/?spm_id_from333.337.search-card.all.click&vd_source7a1a0bc74158c6993c7355c5490fc600 下面这个式子就是卷积 看完了,感觉似懂非懂 下一个参考视频:https://www.y…...
java解决修改图片尺寸,压缩图片后出现背景变黑,图片字体模糊问题
将以下数学公式的图片使用Hutool提供的图片工具类改变尺寸 代码如下: package com.jason.common.file.word;import cn.hutool.core.img.ImgUtil; import cn.hutool.core.io.FileUtil;import javax.imageio.ImageIO; import java.awt.*; import java.awt.image.BufferedImage;…...
jq/js检测鼠标指针移动离开页面
通过 mouseout 鼠标事件,判断鼠标去往哪个元素 知识点:relatedTarget 事件属性 定义和用法 relatedTarget 事件属性返回与事件的目标节点相关的节点。 对于 mouseover 事件来说,该属性是鼠标指针移到目标节点上时所离开的那个节点。 对于 …...
ICC2: 如何在显示GUI操作产生的命令
我正在「拾陆楼」和朋友们讨论有趣的话题,你⼀起来吧? 拾陆楼知识星球入口 ICC2:自定义快捷键和菜单 VIEW -> Perference -> Global Settings 把display commands in logging console 下面几个都勾上即可。...
内网渗透——macOS上搭建Web服务器
# 公网访问macOS本地web服务器【内网穿透】 文章目录 1. 启动Apache服务器2. 公网访问本地web服务2.1 本地安装配置cpolar2.2 创建隧道2.3 测试访问公网地址3. 配置固定二级子域名3.1 保留一个二级子域名3.2 配置二级子域名4. 测试访问公网固定二级子域名 以macOS自带的Apache…...
Centos下用nodejs实现一个简单的web服务器
WebRTC是音视频直播中最常用的一个框架,在使用的过程中,我们就需要实现一个服务器端。本文以nodejs实现一个服务器为例,讲述一下在centos下如何用nodejs实现一个简单的web服务器。 一、安装nodejs 在linux环境下安装nodejs有多重方式&#x…...
3.10每日一题(三角有理函数积分(三角函数加减乘除))
1、通过类型判别方法>判断出为凑 tanx 2、加项减项拆常用的积分公式 注:tanx的导数是:cosx的平方分之一 cosx的平方分之一 1 tanx arctanx的求导公式要记住...
python练习(猜数字,99乘法表)
python练习(猜数字,99乘法表) 猜数字 import random num1random.choice(range(1,101))for i in range(11):num2input("plz input a number:")num2int(num2)if num1<num2:print("太大了,小一点")elif num1>num2:print("…...
正确部署Baichuan2(Ubuntu20.4) 步骤及可能出现的问题
部署其实是不太复杂的,但实际上也耗费了接近2-3天的时间去不断的设置 1 硬件配置信息 采用esxi 虚拟化的方式将T4 卡穿透给esxi 种的ubuntu20.4虚拟机 CPU给到8 core 内存至少32GB以上 T4卡是16GB 2 预先准备OS环境 这里使用的是ubuntu20.4版本,esxi中需要设置uefI启动方…...
docker 部署prometheus和grafana
1.启动node 容器 docker run -d -p 9100:9100 -v "/proc:/host/proc:ro" -v "/sys:/host/sys:ro" -v "/:/rootfs:ro" --net"bridge" prom/node-exporter 2.访问http://192.168.1.122:9100/metrics 3.创建文件/home/prometheus/ 下…...
在本地模拟C/S,Socket套接字的使用
public class SocketTCP01Server {public static void main(String[] args) throws IOException {/**1.在本机的 9999 端口监听 ,等待连接细节: 要求在本机没有其他服务在监听999细节:这个ServerSocket 可以通过accept()返回多个Socket[多个客…...
香港科技大学广州|可持续能源与环境学域博士招生宣讲会—东南大学专场!!!(暨全额奖学金政策)
香港科技大学广州|可持续能源与环境学域博士招生宣讲会—东南大学专场!!!(暨全额奖学金政策) “面向未来改变游戏规则的——可持续能源与环境学域” 专注于能源环境跨学科尖端技术研究 培养可持续能源技术…...
[Leetcode] 0108. 将有序数组转换为二叉搜索树
108. 将有序数组转换为二叉搜索树 题目描述 给你一个整数数组 nums ,其中元素已经按 升序 排列,请你将其转换为一棵 高度平衡 二叉搜索树。 高度平衡 二叉树是一棵满足「每个节点的左右两个子树的高度差的绝对值不超过 1 」的二叉树。 示例 1:…...
Pandas数据导入和导出:CSV、Excel、MySQL、JSON
导入MySQL查询结果:read_sql import pandascon "mysqlpymysql://user:pass127.0.0.1/test" sql "SELECT * FROM student WHERE id 2"# sql查询 df1 pandas.read_sql(sqlsql, concon) print(df1)导入MySQL整张表:read_sql_table…...
第16期 | GPTSecurity周报
GPTSecurity是一个涵盖了前沿学术研究和实践经验分享的社区,集成了生成预训练 Transformer(GPT)、人工智能生成内容(AIGC)以及大型语言模型(LLM)等安全领域应用的知识。在这里,您可以…...
省钱兄短剧短视频视频滑动播放模块源码支持微信小程序h5安卓IOS
# 开源说明 开源省钱兄短剧系统的播放视频模块(写了测试弄了好久才弄出来、最核心的模块、已经实战了),使用uniapp技术,提供学习使用,支持IOSAndroidH5微信小程序,使用Hbuilder导入即可运行 #注意ÿ…...
SDRAM学习笔记(MT48LC16M16A2,w9812g6kh)
一、基本知识 SDRAM : 即同步动态随机存储器(Synchronous Dynamic Random Access Memory), 同步是指其时钟频率与对应控制器(CPU/FPGA)的系统时钟频率相同,并且内部命令 的发送与数据传输都是以该时钟为基准ÿ…...
ARM 学习笔记3 STM32G4 定时器相关资料整理
官方文档 AN4539 HRTIM cookbookAN4539_HRTIM使用指南 中文版的文档,注意文档的版本号滞后于英文原版ST MCU中文文档 中文文档汇总 博客文章 STM32-定时器详解【STM32H7教程】第63章 STM32H7的高分辨率定时器HRTIM基础知识和HAL库APIstm32f334 HRTIM触发ADC注入中…...
LeetCode 917 仅仅反转字母 简单
题目 - 点击直达 1. XXXXX1. 917 仅仅反转字母 简单1. 原题链接2. 题目要求3. 基础框架 2. 解题思路1. 思路分析2. 时间复杂度3. 代码实现 1. XXXXX 1. 917 仅仅反转字母 简单 给你一个字符串 s ,根据下述规则反转字符串: 所有非英文字母保留在原有位置…...
深入理解JavaScript设计模式之单例模式
目录 什么是单例模式为什么需要单例模式常见应用场景包括 单例模式实现透明单例模式实现不透明单例模式用代理实现单例模式javaScript中的单例模式使用命名空间使用闭包封装私有变量 惰性单例通用的惰性单例 结语 什么是单例模式 单例模式(Singleton Pattern&#…...
【2025年】解决Burpsuite抓不到https包的问题
环境:windows11 burpsuite:2025.5 在抓取https网站时,burpsuite抓取不到https数据包,只显示: 解决该问题只需如下三个步骤: 1、浏览器中访问 http://burp 2、下载 CA certificate 证书 3、在设置--隐私与安全--…...
tree 树组件大数据卡顿问题优化
问题背景 项目中有用到树组件用来做文件目录,但是由于这个树组件的节点越来越多,导致页面在滚动这个树组件的时候浏览器就很容易卡死。这种问题基本上都是因为dom节点太多,导致的浏览器卡顿,这里很明显就需要用到虚拟列表的技术&…...
DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”
目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...
Unsafe Fileupload篇补充-木马的详细教程与木马分享(中国蚁剑方式)
在之前的皮卡丘靶场第九期Unsafe Fileupload篇中我们学习了木马的原理并且学了一个简单的木马文件 本期内容是为了更好的为大家解释木马(服务器方面的)的原理,连接,以及各种木马及连接工具的分享 文件木马:https://w…...
Cilium动手实验室: 精通之旅---13.Cilium LoadBalancer IPAM and L2 Service Announcement
Cilium动手实验室: 精通之旅---13.Cilium LoadBalancer IPAM and L2 Service Announcement 1. LAB环境2. L2公告策略2.1 部署Death Star2.2 访问服务2.3 部署L2公告策略2.4 服务宣告 3. 可视化 ARP 流量3.1 部署新服务3.2 准备可视化3.3 再次请求 4. 自动IPAM4.1 IPAM Pool4.2 …...
【UE5 C++】通过文件对话框获取选择文件的路径
目录 效果 步骤 源码 效果 步骤 1. 在“xxx.Build.cs”中添加需要使用的模块 ,这里主要使用“DesktopPlatform”模块 2. 添加后闭UE编辑器,右键点击 .uproject 文件,选择 "Generate Visual Studio project files",重…...
JDK 17 序列化是怎么回事
如何序列化?其实很简单,就是根据每个类型,用工厂类调用。逐个完成。 没什么漂亮的代码,只有有效、稳定的代码。 代码中调用toJson toJson 代码 mapper.writeValueAsString ObjectMapper DefaultSerializerProvider 一堆实…...
WEB3全栈开发——面试专业技能点P4数据库
一、mysql2 原生驱动及其连接机制 概念介绍 mysql2 是 Node.js 环境中广泛使用的 MySQL 客户端库,基于 mysql 库改进而来,具有更好的性能、Promise 支持、流式查询、二进制数据处理能力等。 主要特点: 支持 Promise / async-await…...
leetcode73-矩阵置零
leetcode 73 思路 记录 0 元素的位置:遍历整个矩阵,找出所有值为 0 的元素,并将它们的坐标记录在数组zeroPosition中置零操作:遍历记录的所有 0 元素位置,将每个位置对应的行和列的所有元素置为 0 具体步骤 初始化…...
