当前位置: 首页 > news >正文

【python数学建模】特征值与特征向量运用

1、求数列通项

(1)转化为求矩阵的幂次问题

例:求斐波那契数列的通项公式
已知斐波那契数列满足: F k + 2 = F k + 1 + F k F_{k+2}=F_{k+1}+F_{k} Fk+2=Fk+1+Fk

(a) 降阶:将二阶差分方程转化为一阶差分方程组

{ F k + 1 = F k + 1 F k + 2 = F k + 1 + F k \begin{cases} F_{k+1}=F_{k+1}\\ F_{k+2}=F_{k+1}+F_{k} \end{cases} {Fk+1=Fk+1Fk+2=Fk+1+Fk 写成矩阵形式: a k + 1 = A a k k = 0 , 1 , 2 , . . . a_{k+1}=Aa_{k}\ k=0,1,2,... ak+1=Aak k=0,1,2,...
其中 A = ( 0 1 1 1 ) , a k = ( F k F k + 1 ) , a 0 = ( 1 1 ) A=\left(\begin{matrix} 0&1\\1&1 \end{matrix}\right)\ , \ a_k=\left(\begin{matrix} F_k\\F_{k+1} \end{matrix}\right)\ , \ a_0=\left(\begin{matrix} 1\\1 \end{matrix}\right) A=(0111) , ak=(FkFk+1) , a0=(11)
推导得有: a k = A k a 0 a_k=A^ka_0 ak=Aka0

(b) 求矩阵的Jordan标准形
矩阵的特征方程为: λ 2 − λ − 1 \lambda^2-\lambda-1 λ2λ1,特征根为 1 ± 5 2 \frac{1\pm \sqrt5}{2} 21±5 ,特征向量为 , ( 1 ± 5 2 1 ) \ , \ \left(\begin{matrix} \frac{1\pm \sqrt5}{2}\\1 \end{matrix}\right)  , (21±5 1),取特征向量为列向量构成矩阵 P P P
则有 A = P ( 1 + 5 2 0 0 1 − 5 2 ) P − 1 A=P\left(\begin{matrix} \frac{1+ \sqrt5}{2}&0\\0&\frac{1- \sqrt5}{2} \end{matrix}\right)P^{-1} A=P(21+5 00215 )P1
从而 a k = A k a 0 a_k=A^ka_0 ak=Aka0,斐波那契数列的通项公式为 a k a_k ak的第一行元素。

(c) python实现

import sympy as sp
sp.var('k',positive=True,integre=True)
a=sp.Matrix([[0,1],[1,1]])
val=a.eigenvals()
vec=a.eigenvects()
P,D=a.diagonalize()
ak=P@(D**k)@(P.inv())
F=ak@sp.Matrix([1,1])
print(sp.latex(sp.simplify(F[0])))

求出通项公式为: F k = 2 − k ( 2 ( 1 − 5 ) k + 5 ( 1 + 5 ) k + 3 ( 1 + 5 ) k ) 5 + 5 F^k=\frac{2^{- k} \left(2 \left(1 - \sqrt{5}\right)^{k} + \sqrt{5} \left(1 + \sqrt{5}\right)^{k} + 3 \left(1 + \sqrt{5}\right)^{k}\right)}{\sqrt{5} + 5} Fk=5 +52k(2(15 )k+5 (1+5 )k+3(1+5 )k)
取值:

f = sp.lambdify(k,F[0])
print(f(9))

(2)特征根法求通项

由于斐波那契数列的特征根是互异的,故可设通项为:
F k = c 1 ( 1 + 5 2 ) k + c 2 ( 1 − 5 2 ) k F_k=c_1(\frac{1+\sqrt5}{2})^k+c_2(\frac{1-\sqrt5}{2})^k Fk=c1(21+5 )k+c2(215 )k
代入初值条件求解上述二元一次方程: F 0 = F 1 = 1 F_0=F_1=1 F0=F1=1
{ c 1 + c 2 = 1 c 1 ( 1 + 5 2 ) + c 2 ( 1 − 5 2 ) = 1 \begin{cases} c_1+c_2=1\\ c_1(\frac{1+\sqrt5}{2})+c_2(\frac{1-\sqrt5}{2})=1 \end{cases} {c1+c2=1c1(21+5 )+c2(215 )=1
解得 { c 1 = 1 2 + 5 10 c 2 = 1 2 − 5 10 \begin{cases} c1=\frac{1}{2}+\frac{\sqrt5}{10}\\c2=\frac{1}{2}-\frac{\sqrt5}{10} \end{cases} {c1=21+105 c2=21105 ,从而得到通项公式。

python实现:

import sympy as sp
x=sp.symbols('x')
c=sp.symbols('c:2')
f=sp.Eq(x**2,x+1)
vals=list(sp.solveset(f))
eq1=c[0]+c[1]-1
eq2=c[0]*vals[0]+c[1]*vals[1]-1
s=sp.solve([eq1,eq2])

(3)利用rsolve函数求解有理系数单变量递推式

import sympy as sp
k=sp.symbols('k')
y=sp.Function('y')
f=y(k+2)-y(k+1)-y(k)
F=sp.rsolve(f,y(k),{y(0):1, y(1):1})

2、Leslie种群模型

3、Pagerank算法

相关文章:

【python数学建模】特征值与特征向量运用

1、求数列通项 (1)转化为求矩阵的幂次问题 例:求斐波那契数列的通项公式 已知斐波那契数列满足: F k 2 F k 1 F k F_{k2}F_{k1}F_{k} Fk2​Fk1​Fk​ (a) 降阶:将二阶差分方程转化为一阶…...

什么是 CNN? 卷积神经网络? 怎么用 CNN 进行分类?(1)

先看卷积是啥,url: https://www.bilibili.com/video/BV1JX4y1K7Dr/?spm_id_from333.337.search-card.all.click&vd_source7a1a0bc74158c6993c7355c5490fc600 下面这个式子就是卷积 看完了,感觉似懂非懂 下一个参考视频:https://www.y…...

java解决修改图片尺寸,压缩图片后出现背景变黑,图片字体模糊问题

将以下数学公式的图片使用Hutool提供的图片工具类改变尺寸 代码如下: package com.jason.common.file.word;import cn.hutool.core.img.ImgUtil; import cn.hutool.core.io.FileUtil;import javax.imageio.ImageIO; import java.awt.*; import java.awt.image.BufferedImage;…...

jq/js检测鼠标指针移动离开页面

通过 mouseout 鼠标事件,判断鼠标去往哪个元素 知识点:relatedTarget 事件属性 定义和用法 relatedTarget 事件属性返回与事件的目标节点相关的节点。 对于 mouseover 事件来说,该属性是鼠标指针移到目标节点上时所离开的那个节点。 对于 …...

ICC2: 如何在显示GUI操作产生的命令

我正在「拾陆楼」和朋友们讨论有趣的话题,你⼀起来吧? 拾陆楼知识星球入口 ICC2:自定义快捷键和菜单 VIEW -> Perference -> Global Settings 把display commands in logging console 下面几个都勾上即可。...

内网渗透——macOS上搭建Web服务器

# 公网访问macOS本地web服务器【内网穿透】 文章目录 1. 启动Apache服务器2. 公网访问本地web服务2.1 本地安装配置cpolar2.2 创建隧道2.3 测试访问公网地址3. 配置固定二级子域名3.1 保留一个二级子域名3.2 配置二级子域名4. 测试访问公网固定二级子域名 以macOS自带的Apache…...

Centos下用nodejs实现一个简单的web服务器

WebRTC是音视频直播中最常用的一个框架,在使用的过程中,我们就需要实现一个服务器端。本文以nodejs实现一个服务器为例,讲述一下在centos下如何用nodejs实现一个简单的web服务器。 一、安装nodejs 在linux环境下安装nodejs有多重方式&#x…...

3.10每日一题(三角有理函数积分(三角函数加减乘除))

1、通过类型判别方法>判断出为凑 tanx 2、加项减项拆常用的积分公式 注:tanx的导数是:cosx的平方分之一 cosx的平方分之一 1 tanx arctanx的求导公式要记住...

python练习(猜数字,99乘法表)

python练习(猜数字&#xff0c;99乘法表) 猜数字 import random num1random.choice(range(1,101))for i in range(11):num2input("plz input a number:")num2int(num2)if num1<num2:print("太大了&#xff0c;小一点")elif num1>num2:print("…...

正确部署Baichuan2(Ubuntu20.4) 步骤及可能出现的问题

部署其实是不太复杂的,但实际上也耗费了接近2-3天的时间去不断的设置 1 硬件配置信息 采用esxi 虚拟化的方式将T4 卡穿透给esxi 种的ubuntu20.4虚拟机 CPU给到8 core 内存至少32GB以上 T4卡是16GB 2 预先准备OS环境 这里使用的是ubuntu20.4版本,esxi中需要设置uefI启动方…...

docker 部署prometheus和grafana

1.启动node 容器 docker run -d -p 9100:9100 -v "/proc:/host/proc:ro" -v "/sys:/host/sys:ro" -v "/:/rootfs:ro" --net"bridge" prom/node-exporter 2.访问http://192.168.1.122:9100/metrics 3.创建文件/home/prometheus/ 下…...

在本地模拟C/S,Socket套接字的使用

public class SocketTCP01Server {public static void main(String[] args) throws IOException {/**1.在本机的 9999 端口监听 &#xff0c;等待连接细节&#xff1a; 要求在本机没有其他服务在监听999细节&#xff1a;这个ServerSocket 可以通过accept()返回多个Socket[多个客…...

香港科技大学广州|可持续能源与环境学域博士招生宣讲会—东南大学专场!!!(暨全额奖学金政策)

香港科技大学广州&#xff5c;可持续能源与环境学域博士招生宣讲会—东南大学专场&#xff01;&#xff01;&#xff01;&#xff08;暨全额奖学金政策&#xff09; “面向未来改变游戏规则的——可持续能源与环境学域” 专注于能源环境跨学科尖端技术研究 培养可持续能源技术…...

[Leetcode] 0108. 将有序数组转换为二叉搜索树

108. 将有序数组转换为二叉搜索树 题目描述 给你一个整数数组 nums &#xff0c;其中元素已经按 升序 排列&#xff0c;请你将其转换为一棵 高度平衡 二叉搜索树。 高度平衡 二叉树是一棵满足「每个节点的左右两个子树的高度差的绝对值不超过 1 」的二叉树。 示例 1&#xff1a…...

Pandas数据导入和导出:CSV、Excel、MySQL、JSON

导入MySQL查询结果&#xff1a;read_sql import pandascon "mysqlpymysql://user:pass127.0.0.1/test" sql "SELECT * FROM student WHERE id 2"# sql查询 df1 pandas.read_sql(sqlsql, concon) print(df1)导入MySQL整张表&#xff1a;read_sql_table…...

第16期 | GPTSecurity周报

GPTSecurity是一个涵盖了前沿学术研究和实践经验分享的社区&#xff0c;集成了生成预训练 Transformer&#xff08;GPT&#xff09;、人工智能生成内容&#xff08;AIGC&#xff09;以及大型语言模型&#xff08;LLM&#xff09;等安全领域应用的知识。在这里&#xff0c;您可以…...

省钱兄短剧短视频视频滑动播放模块源码支持微信小程序h5安卓IOS

# 开源说明 开源省钱兄短剧系统的播放视频模块&#xff08;写了测试弄了好久才弄出来、最核心的模块、已经实战了&#xff09;&#xff0c;使用uniapp技术&#xff0c;提供学习使用&#xff0c;支持IOSAndroidH5微信小程序&#xff0c;使用Hbuilder导入即可运行 #注意&#xff…...

SDRAM学习笔记(MT48LC16M16A2,w9812g6kh)

一、基本知识 SDRAM : 即同步动态随机存储器&#xff08;Synchronous Dynamic Random Access Memory&#xff09;, 同步是指其时钟频率与对应控制器&#xff08;CPU/FPGA&#xff09;的系统时钟频率相同&#xff0c;并且内部命令 的发送与数据传输都是以该时钟为基准&#xff…...

ARM 学习笔记3 STM32G4 定时器相关资料整理

官方文档 AN4539 HRTIM cookbookAN4539_HRTIM使用指南 中文版的文档&#xff0c;注意文档的版本号滞后于英文原版ST MCU中文文档 中文文档汇总 博客文章 STM32-定时器详解【STM32H7教程】第63章 STM32H7的高分辨率定时器HRTIM基础知识和HAL库APIstm32f334 HRTIM触发ADC注入中…...

LeetCode 917 仅仅反转字母 简单

题目 - 点击直达 1. XXXXX1. 917 仅仅反转字母 简单1. 原题链接2. 题目要求3. 基础框架 2. 解题思路1. 思路分析2. 时间复杂度3. 代码实现 1. XXXXX 1. 917 仅仅反转字母 简单 给你一个字符串 s &#xff0c;根据下述规则反转字符串&#xff1a; 所有非英文字母保留在原有位置…...

华为云AI开发平台ModelArts

华为云ModelArts&#xff1a;重塑AI开发流程的“智能引擎”与“创新加速器”&#xff01; 在人工智能浪潮席卷全球的2025年&#xff0c;企业拥抱AI的意愿空前高涨&#xff0c;但技术门槛高、流程复杂、资源投入巨大的现实&#xff0c;却让许多创新构想止步于实验室。数据科学家…...

国防科技大学计算机基础课程笔记02信息编码

1.机内码和国标码 国标码就是我们非常熟悉的这个GB2312,但是因为都是16进制&#xff0c;因此这个了16进制的数据既可以翻译成为这个机器码&#xff0c;也可以翻译成为这个国标码&#xff0c;所以这个时候很容易会出现这个歧义的情况&#xff1b; 因此&#xff0c;我们的这个国…...

Spring Boot 实现流式响应(兼容 2.7.x)

在实际开发中&#xff0c;我们可能会遇到一些流式数据处理的场景&#xff0c;比如接收来自上游接口的 Server-Sent Events&#xff08;SSE&#xff09; 或 流式 JSON 内容&#xff0c;并将其原样中转给前端页面或客户端。这种情况下&#xff0c;传统的 RestTemplate 缓存机制会…...

智慧工地云平台源码,基于微服务架构+Java+Spring Cloud +UniApp +MySql

智慧工地管理云平台系统&#xff0c;智慧工地全套源码&#xff0c;java版智慧工地源码&#xff0c;支持PC端、大屏端、移动端。 智慧工地聚焦建筑行业的市场需求&#xff0c;提供“平台网络终端”的整体解决方案&#xff0c;提供劳务管理、视频管理、智能监测、绿色施工、安全管…...

unix/linux,sudo,其发展历程详细时间线、由来、历史背景

sudo 的诞生和演化,本身就是一部 Unix/Linux 系统管理哲学变迁的微缩史。来,让我们拨开时间的迷雾,一同探寻 sudo 那波澜壮阔(也颇为实用主义)的发展历程。 历史背景:su的时代与困境 ( 20 世纪 70 年代 - 80 年代初) 在 sudo 出现之前,Unix 系统管理员和需要特权操作的…...

06 Deep learning神经网络编程基础 激活函数 --吴恩达

深度学习激活函数详解 一、核心作用 引入非线性:使神经网络可学习复杂模式控制输出范围:如Sigmoid将输出限制在(0,1)梯度传递:影响反向传播的稳定性二、常见类型及数学表达 Sigmoid σ ( x ) = 1 1 +...

网络编程(UDP编程)

思维导图 UDP基础编程&#xff08;单播&#xff09; 1.流程图 服务器&#xff1a;短信的接收方 创建套接字 (socket)-----------------------------------------》有手机指定网络信息-----------------------------------------------》有号码绑定套接字 (bind)--------------…...

Java + Spring Boot + Mybatis 实现批量插入

在 Java 中使用 Spring Boot 和 MyBatis 实现批量插入可以通过以下步骤完成。这里提供两种常用方法&#xff1a;使用 MyBatis 的 <foreach> 标签和批处理模式&#xff08;ExecutorType.BATCH&#xff09;。 方法一&#xff1a;使用 XML 的 <foreach> 标签&#xff…...

pycharm 设置环境出错

pycharm 设置环境出错 pycharm 新建项目&#xff0c;设置虚拟环境&#xff0c;出错 pycharm 出错 Cannot open Local Failed to start [powershell.exe, -NoExit, -ExecutionPolicy, Bypass, -File, C:\Program Files\JetBrains\PyCharm 2024.1.3\plugins\terminal\shell-int…...

Java详解LeetCode 热题 100(26):LeetCode 142. 环形链表 II(Linked List Cycle II)详解

文章目录 1. 题目描述1.1 链表节点定义 2. 理解题目2.1 问题可视化2.2 核心挑战 3. 解法一&#xff1a;HashSet 标记访问法3.1 算法思路3.2 Java代码实现3.3 详细执行过程演示3.4 执行结果示例3.5 复杂度分析3.6 优缺点分析 4. 解法二&#xff1a;Floyd 快慢指针法&#xff08;…...