当前位置: 首页 > news >正文

【python数学建模】特征值与特征向量运用

1、求数列通项

(1)转化为求矩阵的幂次问题

例:求斐波那契数列的通项公式
已知斐波那契数列满足: F k + 2 = F k + 1 + F k F_{k+2}=F_{k+1}+F_{k} Fk+2=Fk+1+Fk

(a) 降阶:将二阶差分方程转化为一阶差分方程组

{ F k + 1 = F k + 1 F k + 2 = F k + 1 + F k \begin{cases} F_{k+1}=F_{k+1}\\ F_{k+2}=F_{k+1}+F_{k} \end{cases} {Fk+1=Fk+1Fk+2=Fk+1+Fk 写成矩阵形式: a k + 1 = A a k k = 0 , 1 , 2 , . . . a_{k+1}=Aa_{k}\ k=0,1,2,... ak+1=Aak k=0,1,2,...
其中 A = ( 0 1 1 1 ) , a k = ( F k F k + 1 ) , a 0 = ( 1 1 ) A=\left(\begin{matrix} 0&1\\1&1 \end{matrix}\right)\ , \ a_k=\left(\begin{matrix} F_k\\F_{k+1} \end{matrix}\right)\ , \ a_0=\left(\begin{matrix} 1\\1 \end{matrix}\right) A=(0111) , ak=(FkFk+1) , a0=(11)
推导得有: a k = A k a 0 a_k=A^ka_0 ak=Aka0

(b) 求矩阵的Jordan标准形
矩阵的特征方程为: λ 2 − λ − 1 \lambda^2-\lambda-1 λ2λ1,特征根为 1 ± 5 2 \frac{1\pm \sqrt5}{2} 21±5 ,特征向量为 , ( 1 ± 5 2 1 ) \ , \ \left(\begin{matrix} \frac{1\pm \sqrt5}{2}\\1 \end{matrix}\right)  , (21±5 1),取特征向量为列向量构成矩阵 P P P
则有 A = P ( 1 + 5 2 0 0 1 − 5 2 ) P − 1 A=P\left(\begin{matrix} \frac{1+ \sqrt5}{2}&0\\0&\frac{1- \sqrt5}{2} \end{matrix}\right)P^{-1} A=P(21+5 00215 )P1
从而 a k = A k a 0 a_k=A^ka_0 ak=Aka0,斐波那契数列的通项公式为 a k a_k ak的第一行元素。

(c) python实现

import sympy as sp
sp.var('k',positive=True,integre=True)
a=sp.Matrix([[0,1],[1,1]])
val=a.eigenvals()
vec=a.eigenvects()
P,D=a.diagonalize()
ak=P@(D**k)@(P.inv())
F=ak@sp.Matrix([1,1])
print(sp.latex(sp.simplify(F[0])))

求出通项公式为: F k = 2 − k ( 2 ( 1 − 5 ) k + 5 ( 1 + 5 ) k + 3 ( 1 + 5 ) k ) 5 + 5 F^k=\frac{2^{- k} \left(2 \left(1 - \sqrt{5}\right)^{k} + \sqrt{5} \left(1 + \sqrt{5}\right)^{k} + 3 \left(1 + \sqrt{5}\right)^{k}\right)}{\sqrt{5} + 5} Fk=5 +52k(2(15 )k+5 (1+5 )k+3(1+5 )k)
取值:

f = sp.lambdify(k,F[0])
print(f(9))

(2)特征根法求通项

由于斐波那契数列的特征根是互异的,故可设通项为:
F k = c 1 ( 1 + 5 2 ) k + c 2 ( 1 − 5 2 ) k F_k=c_1(\frac{1+\sqrt5}{2})^k+c_2(\frac{1-\sqrt5}{2})^k Fk=c1(21+5 )k+c2(215 )k
代入初值条件求解上述二元一次方程: F 0 = F 1 = 1 F_0=F_1=1 F0=F1=1
{ c 1 + c 2 = 1 c 1 ( 1 + 5 2 ) + c 2 ( 1 − 5 2 ) = 1 \begin{cases} c_1+c_2=1\\ c_1(\frac{1+\sqrt5}{2})+c_2(\frac{1-\sqrt5}{2})=1 \end{cases} {c1+c2=1c1(21+5 )+c2(215 )=1
解得 { c 1 = 1 2 + 5 10 c 2 = 1 2 − 5 10 \begin{cases} c1=\frac{1}{2}+\frac{\sqrt5}{10}\\c2=\frac{1}{2}-\frac{\sqrt5}{10} \end{cases} {c1=21+105 c2=21105 ,从而得到通项公式。

python实现:

import sympy as sp
x=sp.symbols('x')
c=sp.symbols('c:2')
f=sp.Eq(x**2,x+1)
vals=list(sp.solveset(f))
eq1=c[0]+c[1]-1
eq2=c[0]*vals[0]+c[1]*vals[1]-1
s=sp.solve([eq1,eq2])

(3)利用rsolve函数求解有理系数单变量递推式

import sympy as sp
k=sp.symbols('k')
y=sp.Function('y')
f=y(k+2)-y(k+1)-y(k)
F=sp.rsolve(f,y(k),{y(0):1, y(1):1})

2、Leslie种群模型

3、Pagerank算法

相关文章:

【python数学建模】特征值与特征向量运用

1、求数列通项 (1)转化为求矩阵的幂次问题 例:求斐波那契数列的通项公式 已知斐波那契数列满足: F k 2 F k 1 F k F_{k2}F_{k1}F_{k} Fk2​Fk1​Fk​ (a) 降阶:将二阶差分方程转化为一阶…...

什么是 CNN? 卷积神经网络? 怎么用 CNN 进行分类?(1)

先看卷积是啥,url: https://www.bilibili.com/video/BV1JX4y1K7Dr/?spm_id_from333.337.search-card.all.click&vd_source7a1a0bc74158c6993c7355c5490fc600 下面这个式子就是卷积 看完了,感觉似懂非懂 下一个参考视频:https://www.y…...

java解决修改图片尺寸,压缩图片后出现背景变黑,图片字体模糊问题

将以下数学公式的图片使用Hutool提供的图片工具类改变尺寸 代码如下: package com.jason.common.file.word;import cn.hutool.core.img.ImgUtil; import cn.hutool.core.io.FileUtil;import javax.imageio.ImageIO; import java.awt.*; import java.awt.image.BufferedImage;…...

jq/js检测鼠标指针移动离开页面

通过 mouseout 鼠标事件,判断鼠标去往哪个元素 知识点:relatedTarget 事件属性 定义和用法 relatedTarget 事件属性返回与事件的目标节点相关的节点。 对于 mouseover 事件来说,该属性是鼠标指针移到目标节点上时所离开的那个节点。 对于 …...

ICC2: 如何在显示GUI操作产生的命令

我正在「拾陆楼」和朋友们讨论有趣的话题,你⼀起来吧? 拾陆楼知识星球入口 ICC2:自定义快捷键和菜单 VIEW -> Perference -> Global Settings 把display commands in logging console 下面几个都勾上即可。...

内网渗透——macOS上搭建Web服务器

# 公网访问macOS本地web服务器【内网穿透】 文章目录 1. 启动Apache服务器2. 公网访问本地web服务2.1 本地安装配置cpolar2.2 创建隧道2.3 测试访问公网地址3. 配置固定二级子域名3.1 保留一个二级子域名3.2 配置二级子域名4. 测试访问公网固定二级子域名 以macOS自带的Apache…...

Centos下用nodejs实现一个简单的web服务器

WebRTC是音视频直播中最常用的一个框架,在使用的过程中,我们就需要实现一个服务器端。本文以nodejs实现一个服务器为例,讲述一下在centos下如何用nodejs实现一个简单的web服务器。 一、安装nodejs 在linux环境下安装nodejs有多重方式&#x…...

3.10每日一题(三角有理函数积分(三角函数加减乘除))

1、通过类型判别方法>判断出为凑 tanx 2、加项减项拆常用的积分公式 注:tanx的导数是:cosx的平方分之一 cosx的平方分之一 1 tanx arctanx的求导公式要记住...

python练习(猜数字,99乘法表)

python练习(猜数字&#xff0c;99乘法表) 猜数字 import random num1random.choice(range(1,101))for i in range(11):num2input("plz input a number:")num2int(num2)if num1<num2:print("太大了&#xff0c;小一点")elif num1>num2:print("…...

正确部署Baichuan2(Ubuntu20.4) 步骤及可能出现的问题

部署其实是不太复杂的,但实际上也耗费了接近2-3天的时间去不断的设置 1 硬件配置信息 采用esxi 虚拟化的方式将T4 卡穿透给esxi 种的ubuntu20.4虚拟机 CPU给到8 core 内存至少32GB以上 T4卡是16GB 2 预先准备OS环境 这里使用的是ubuntu20.4版本,esxi中需要设置uefI启动方…...

docker 部署prometheus和grafana

1.启动node 容器 docker run -d -p 9100:9100 -v "/proc:/host/proc:ro" -v "/sys:/host/sys:ro" -v "/:/rootfs:ro" --net"bridge" prom/node-exporter 2.访问http://192.168.1.122:9100/metrics 3.创建文件/home/prometheus/ 下…...

在本地模拟C/S,Socket套接字的使用

public class SocketTCP01Server {public static void main(String[] args) throws IOException {/**1.在本机的 9999 端口监听 &#xff0c;等待连接细节&#xff1a; 要求在本机没有其他服务在监听999细节&#xff1a;这个ServerSocket 可以通过accept()返回多个Socket[多个客…...

香港科技大学广州|可持续能源与环境学域博士招生宣讲会—东南大学专场!!!(暨全额奖学金政策)

香港科技大学广州&#xff5c;可持续能源与环境学域博士招生宣讲会—东南大学专场&#xff01;&#xff01;&#xff01;&#xff08;暨全额奖学金政策&#xff09; “面向未来改变游戏规则的——可持续能源与环境学域” 专注于能源环境跨学科尖端技术研究 培养可持续能源技术…...

[Leetcode] 0108. 将有序数组转换为二叉搜索树

108. 将有序数组转换为二叉搜索树 题目描述 给你一个整数数组 nums &#xff0c;其中元素已经按 升序 排列&#xff0c;请你将其转换为一棵 高度平衡 二叉搜索树。 高度平衡 二叉树是一棵满足「每个节点的左右两个子树的高度差的绝对值不超过 1 」的二叉树。 示例 1&#xff1a…...

Pandas数据导入和导出:CSV、Excel、MySQL、JSON

导入MySQL查询结果&#xff1a;read_sql import pandascon "mysqlpymysql://user:pass127.0.0.1/test" sql "SELECT * FROM student WHERE id 2"# sql查询 df1 pandas.read_sql(sqlsql, concon) print(df1)导入MySQL整张表&#xff1a;read_sql_table…...

第16期 | GPTSecurity周报

GPTSecurity是一个涵盖了前沿学术研究和实践经验分享的社区&#xff0c;集成了生成预训练 Transformer&#xff08;GPT&#xff09;、人工智能生成内容&#xff08;AIGC&#xff09;以及大型语言模型&#xff08;LLM&#xff09;等安全领域应用的知识。在这里&#xff0c;您可以…...

省钱兄短剧短视频视频滑动播放模块源码支持微信小程序h5安卓IOS

# 开源说明 开源省钱兄短剧系统的播放视频模块&#xff08;写了测试弄了好久才弄出来、最核心的模块、已经实战了&#xff09;&#xff0c;使用uniapp技术&#xff0c;提供学习使用&#xff0c;支持IOSAndroidH5微信小程序&#xff0c;使用Hbuilder导入即可运行 #注意&#xff…...

SDRAM学习笔记(MT48LC16M16A2,w9812g6kh)

一、基本知识 SDRAM : 即同步动态随机存储器&#xff08;Synchronous Dynamic Random Access Memory&#xff09;, 同步是指其时钟频率与对应控制器&#xff08;CPU/FPGA&#xff09;的系统时钟频率相同&#xff0c;并且内部命令 的发送与数据传输都是以该时钟为基准&#xff…...

ARM 学习笔记3 STM32G4 定时器相关资料整理

官方文档 AN4539 HRTIM cookbookAN4539_HRTIM使用指南 中文版的文档&#xff0c;注意文档的版本号滞后于英文原版ST MCU中文文档 中文文档汇总 博客文章 STM32-定时器详解【STM32H7教程】第63章 STM32H7的高分辨率定时器HRTIM基础知识和HAL库APIstm32f334 HRTIM触发ADC注入中…...

LeetCode 917 仅仅反转字母 简单

题目 - 点击直达 1. XXXXX1. 917 仅仅反转字母 简单1. 原题链接2. 题目要求3. 基础框架 2. 解题思路1. 思路分析2. 时间复杂度3. 代码实现 1. XXXXX 1. 917 仅仅反转字母 简单 给你一个字符串 s &#xff0c;根据下述规则反转字符串&#xff1a; 所有非英文字母保留在原有位置…...

云计算——弹性云计算器(ECS)

弹性云服务器&#xff1a;ECS 概述 云计算重构了ICT系统&#xff0c;云计算平台厂商推出使得厂家能够主要关注应用管理而非平台管理的云平台&#xff0c;包含如下主要概念。 ECS&#xff08;Elastic Cloud Server&#xff09;&#xff1a;即弹性云服务器&#xff0c;是云计算…...

QMC5883L的驱动

简介 本篇文章的代码已经上传到了github上面&#xff0c;开源代码 作为一个电子罗盘模块&#xff0c;我们可以通过I2C从中获取偏航角yaw&#xff0c;相对于六轴陀螺仪的yaw&#xff0c;qmc5883l几乎不会零飘并且成本较低。 参考资料 QMC5883L磁场传感器驱动 QMC5883L磁力计…...

AtCoder 第409​场初级竞赛 A~E题解

A Conflict 【题目链接】 原题链接&#xff1a;A - Conflict 【考点】 枚举 【题目大意】 找到是否有两人都想要的物品。 【解析】 遍历两端字符串&#xff0c;只有在同时为 o 时输出 Yes 并结束程序&#xff0c;否则输出 No。 【难度】 GESP三级 【代码参考】 #i…...

Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务

通过akshare库&#xff0c;获取股票数据&#xff0c;并生成TabPFN这个模型 可以识别、处理的格式&#xff0c;写一个完整的预处理示例&#xff0c;并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务&#xff0c;进行预测并输…...

什么是EULA和DPA

文章目录 EULA&#xff08;End User License Agreement&#xff09;DPA&#xff08;Data Protection Agreement&#xff09;一、定义与背景二、核心内容三、法律效力与责任四、实际应用与意义 EULA&#xff08;End User License Agreement&#xff09; 定义&#xff1a; EULA即…...

代理篇12|深入理解 Vite中的Proxy接口代理配置

在前端开发中,常常会遇到 跨域请求接口 的情况。为了解决这个问题,Vite 和 Webpack 都提供了 proxy 代理功能,用于将本地开发请求转发到后端服务器。 什么是代理(proxy)? 代理是在开发过程中,前端项目通过开发服务器,将指定的请求“转发”到真实的后端服务器,从而绕…...

React---day11

14.4 react-redux第三方库 提供connect、thunk之类的函数 以获取一个banner数据为例子 store&#xff1a; 我们在使用异步的时候理应是要使用中间件的&#xff0c;但是configureStore 已经自动集成了 redux-thunk&#xff0c;注意action里面要返回函数 import { configureS…...

C++使用 new 来创建动态数组

问题&#xff1a; 不能使用变量定义数组大小 原因&#xff1a; 这是因为数组在内存中是连续存储的&#xff0c;编译器需要在编译阶段就确定数组的大小&#xff0c;以便正确地分配内存空间。如果允许使用变量来定义数组的大小&#xff0c;那么编译器就无法在编译时确定数组的大…...

安宝特方案丨船舶智造的“AR+AI+作业标准化管理解决方案”(装配)

船舶制造装配管理现状&#xff1a;装配工作依赖人工经验&#xff0c;装配工人凭借长期实践积累的操作技巧完成零部件组装。企业通常制定了装配作业指导书&#xff0c;但在实际执行中&#xff0c;工人对指导书的理解和遵循程度参差不齐。 船舶装配过程中的挑战与需求 挑战 (1…...

《C++ 模板》

目录 函数模板 类模板 非类型模板参数 模板特化 函数模板特化 类模板的特化 模板&#xff0c;就像一个模具&#xff0c;里面可以将不同类型的材料做成一个形状&#xff0c;其分为函数模板和类模板。 函数模板 函数模板可以简化函数重载的代码。格式&#xff1a;templa…...