一致性hash负载均衡
Hash算法的问题
今天看下一致性hash,常见的负载均衡可能使用过hash,比如nginx中,如果使用session最简单就是通过hash,比如根据用户的请求ip进行hash,让不同用户的请求打到同一台服务器,这样状态处理起来最简单,对于session来说,如果现在重新上线了一台服务器,导致了所有请求hash之后的得到的服务器地址变了,也就是session可能全部丢失了,即使用户对应的服务器并没有重启,但是因为服务器数量发生了变化,导致分配到的服务器有所改变,这就是hash带来的问题。
一致性hash的使用场景
那么一致性hash就是解决hash的这些问题诞生的,一致性hash常见的落地场景可以想象下redis的数据,redis是设计了16384的hash槽,每个数据来的根据key做hash,然后分配到固定的hash槽,redis需要集群分片的时候不具体区分每一个key,是去分hash槽,然后新增节点的之后只需要分配给其一些hash槽,然后转移对应的数据过去即可,删除节点的时候也是,只需要把这个节点的数据分配给其他节点即可,没涉及到的数据不会有影响。
一致性hash概念
所以一致性hash的定义也就是,我先分配很多的hash节点,然后我每一个实际的提供服务的节点,负责一部分的hash节点,hash节点是固定的(比实际节点大很多),然后上下线节点只需要调整实际节点负责的节点数量即可。
实际大家说的hash环的问题,就是说,我的很多虚拟节点(hash节点)组成的环,然后让实际的提供服务的节点尽量均匀的落到hash节点上,后续的请求或者说数据,按照hash之后也落到虚拟hash节点上,这个节点可能并没有实际的服务节点,他就可以向后遍历找到对应提供服务的节点,也就代表着一个实际提供服务的节点负责他前面的所有虚拟节点,直到遇到上一个实际服务的节点。
一致性hash需要处理的问题
这样可能存在的问题就是实际服务提供者的hash结果倾斜怎么办,也就是所有节点都落到一片去了,这样前面的节点就需要负责绝大部分的请求,还是要想办法让其尽量均匀,也就是要给每个实际节点,可以多种hash算法,生成多个节点,让其尽可能均匀的分布到环上,让请求均匀分配到节点上
来看下dubbo怎么具体实现的这个问题,关键代码如下:
ConsistentHashSelector(List<Invoker<T>> invokers, String methodName, int identityHashCode) {// treeMap方便向上取this.virtualInvokers = new TreeMap<Long, Invoker<T>>();this.identityHashCode = identityHashCode;URL url = invokers.get(0).getUrl();// 虚拟节点数量?默认160,这里是一个服务虚拟出来的节点this.replicaNumber = url.getMethodParameter(methodName, HASH_NODES, 160);String[] index = COMMA_SPLIT_PATTERN.split(url.getMethodParameter(methodName, HASH_ARGUMENTS, "0"));argumentIndex = new int[index.length];for (int i = 0; i < index.length; i++) {argumentIndex[i] = Integer.parseInt(index[i]);}for (Invoker<T> invoker : invokers) {String address = invoker.getUrl().getAddress();for (int i = 0; i < replicaNumber / 4; i++) {// 这里也就是一个服务默认先虚拟160个节点byte[] digest = Bytes.getMD5(address + i);for (int h = 0; h < 4; h++) {// 分别4位,4位的进行运算,也就是放四个值,每个invoker,使用不同位数得到的hash值long m = hash(digest, h);virtualInvokers.put(m, invoker);}}}}// hash算法,对其每一位进行处理,想要均匀private long hash(byte[] digest, int number) {return (((long) (digest[3 + number * 4] & 0xFF) << 24)| ((long) (digest[2 + number * 4] & 0xFF) << 16)| ((long) (digest[1 + number * 4] & 0xFF) << 8)| (digest[number * 4] & 0xFF))& 0xFFFFFFFFL;}// 具体的选择算法,也就是hash结果选择,关键结构逻辑参考构造方法public Invoker<T> select(Invocation invocation) {byte[] digest = Bytes.getMD5(RpcUtils.getMethodName(invocation));return selectForKey(hash(digest, 0));}// 具体的选择方法private Invoker<T> selectForKey(long hash) {// 向上取,TreeMap的方法Map.Entry<Long, Invoker<T>> entry = virtualInvokers.ceilingEntry(hash);if (entry == null) {// 没取到的取第一个,也就是造成一个环的概念,数据落到最后一个节点后面entry = virtualInvokers.firstEntry();}return entry.getValue();}
总结
可以看到dubbo为了处理数据倾斜的问题,默认虚拟160个节点,然后根据地址加上对应的值,然后又采用每一位数字的hash算法进行散列,得到的值,采用的数据结构就是TreeMap,是一个可排序的Map,可以直接向上取,ceilingEntry,数据过来之后hash得到值,然后取对应的节点,TreeMap兼具一定的查找性能能
相关文章:
一致性hash负载均衡
Hash算法的问题 今天看下一致性hash,常见的负载均衡可能使用过hash,比如nginx中,如果使用session最简单就是通过hash,比如根据用户的请求ip进行hash,让不同用户的请求打到同一台服务器,这样状态处理起来最…...
MAC下安装Python
MAC基本信息: 执行命令: brew install cmake protobuf rust python3.10 git wget 遇到以下问题: > Downloading https://mirrors.aliyun.com/homebrew/homebrew-bottles/rust-1.59.0 Already downloaded: /Users/xxxx/Library/Caches/Ho…...
Android NDK开发详解之JNI中的库文件
Android NDK开发详解之JNI中的库文件 简介工作原理流程原生 activity 和应用 简介 本部分简要介绍了 NDK 的工作原理。Android NDK 是一组使您能将 C 或 C(“原生代码”)嵌入到 Android 应用中的工具。能够在 Android 应用中使用原生代码对于想执行以下…...
KNN模型
使用K-Nearest Neighbors (KNN)算法进行分类。首先加载一个数据集,然后进行预处理,选择最佳的K值,并训练一个KNN模型。 # encodingutf-8 import numpy as np datas np.loadtxt(datingTestSet2.txt) # 加载数据集,返回一个numpy数…...
Python 学习1 基础
文章目录 基础字符串字面量常用的值类型注释变量print语句数据类型数据类型转换标识符运算符 字符串拓展小结 2023.10.28 周六 最近打算学一下Python,毕竟确实简单方便,而且那个编程语言排名还是在第一。不过不打算靠它吃饭,深不深入暂且不说…...
网络协议--TCP的超时与重传
21.1 引言 TCP提供可靠的运输层。它使用的方法之一就是确认从另一端收到的数据。但数据和确认都有可能会丢失。TCP通过在发送时设置一个定时器来解决这种问题。如果当定时器溢出时还没有收到确认,它就重传该数据。对任何实现而言,关键之处就在于超时和重…...
Thread
Thread 线程启动线程第一种创建线程线程的第二种创建方式使用匿名内部类完成线程的两种创建 Thread API线程的优先级线程提供的静态方法守护线程用户线程和守护线程的区别体现在进程结束时 多线并发安全问题同步块 线程 启动线程 启动线程:调用线程的start方法,而不是直接调用…...
FOC系列(二)----继续学习DRV8301芯片
一、 程序框图 跟随上篇博客咱们继续往下看,下面是芯片内部的程序框图: 1.1 BUCK电路 1.2 内部各电源 1.3 SPI通信、栅极驱动器和时序控制器 1.4 MOSFET驱动电路 1.5 电流采样放大电路 数据手册只是给出了这一部分框图,但是没有更加详细的介…...
A. Directional Increase -前缀和与差分理解 + 思维
题面 分析 观察指针移动的性质,可以发现每一段都是从起点走到终点,在原路返回,这样每一段也就表示,在起点处加一,在终点处减一,形成了很明显的差分结构,思考能否构造出a数组的关键就是他的前缀…...
openpnp - java调试环境 - 最好只保留一套jdk环境
文章目录 openpnp - java调试环境 - 最好只保留一套jdk环境概述END openpnp - java调试环境 - 最好只保留一套jdk环境 概述 没注意做了啥操作, 前天好好的, 昨天下午开始, 编译好的openpnp程序就无法正常打开了. 故障表现: 程序运行后, 最多只能看到欢迎对话框(显示版本和发…...
AI技术的钓鱼邮件有多强
如今,人工智能技术的迅猛发展给各个领域都带来了前所未有的变革和进步。2023年上半年ChatGPT的火爆出圈,让人们看到了AI惊艳表现的光彩一面,但同时黑暗的一面也正在暗自发力,野蛮生长。 AI技术不仅可用于维护网络安全,…...
vue/react项目刷新页面出现404报错的原因及解决办法
Vue项目打包部署到线上后,刷新页面会提示404,下面这篇文章主要给大家介绍了关于vue/react项目刷新页面出现404报错的原因及解决办法,文中将解决的办法介绍的很详细,需要的朋友可以参考下 背景解决办法 法1:将vue/react路由模式由history路由改为has…...
黑客技术(网络安全)——如何高效学习
前言 前几天发布了一篇 网络安全(黑客)自学 没想到收到了许多人的私信想要学习网安黑客技术!却不知道从哪里开始学起!怎么学 今天给大家分享一下,很多人上来就说想学习黑客,但是连方向都没搞清楚就开始学习…...
53.MongoDB分片集群高级集群架构详解
MongoDB分片集群架构详解 为什么要使用分片 分片(shard)是指在将数据进行水平切分之后,将其存储到多个不同的服务器节点上的一种扩展方式。 一个复制集能承载的容量和负载是有限的,遇到以下场景就需要考虑使用分片 存储容量需…...
Servlet 上下文参数
7)Servlet上下文对象:ServletContext生活中的例子:张三和李四在不远处窃窃私语,并且频繁的对着你坏笑。你肯定会跑过去问:你们俩在聊什么?注意:此处的聊什么,其实就是你在咨询他们聊天的上下文&…...
ChatGPT正在测试原生文件分析功能,DALL·E 3能P图啦!
10月29日,有部分用户在社交平台上分享,ChatGPT Plus正在测试原生文件上传、分析功能,可以通过文本问答的方式,对上传的PDF等数据文件进行提问、搜索。 例如,上传一份50页的员工手册PDF文件,然后向ChatGPT提…...
三相马达的电机故障维护
目录 电机故障维护编辑 更换电机操作 三相电路 热继电器 今天继续小编的工作经验的分享,今天就说说遇到的问题吧,今天组立熔接机出现故障,后面部分出现了“咕噜噜”的杂声,走到后面一听是电机发出的声音。没有办法了就开始拆…...
【易售小程序项目】后端部署、Uniapp项目Web部署
文章目录 Uniapp项目Web打包部署为什么不部署小程序Web打包前对项目进行调整网站、小程序切换增加constant.js来控制常量将js绑定到main.js的全局变量中 WebSocket差异监听键盘呼出导航条打包部署 后端项目打包部署打包前准备打包部署 Uniapp项目Web打包部署 为什么不部署小程…...
prometheus监控kafka
一、前言 关于对kafka的监控,要求高的话可以使用kafka-exorter和jmx-exporter一起收集监控数据,要求不高的情况下可以使用kafka-exporter收集监控数据即可 二、部署 kafka-exporter 部署kafka-exporter,我是在k8s集群中部署的 编辑yaml文件…...
【STL】:list用法详解
朋友们、伙计们,我们又见面了,本期来给大家解读一下有关list的使用,如果看完之后对你有一定的启发,那么请留下你的三连,祝大家心想事成! C 语 言 专 栏:C语言:从入门到精通 数据结构…...
FFmpeg 低延迟同屏方案
引言 在实时互动需求激增的当下,无论是在线教育中的师生同屏演示、远程办公的屏幕共享协作,还是游戏直播的画面实时传输,低延迟同屏已成为保障用户体验的核心指标。FFmpeg 作为一款功能强大的多媒体框架,凭借其灵活的编解码、数据…...
iPhone密码忘记了办?iPhoneUnlocker,iPhone解锁工具Aiseesoft iPhone Unlocker 高级注册版分享
平时用 iPhone 的时候,难免会碰到解锁的麻烦事。比如密码忘了、人脸识别 / 指纹识别突然不灵,或者买了二手 iPhone 却被原来的 iCloud 账号锁住,这时候就需要靠谱的解锁工具来帮忙了。Aiseesoft iPhone Unlocker 就是专门解决这些问题的软件&…...
Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility
Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility 1. 实验室环境1.1 实验室环境1.2 小测试 2. The Endor System2.1 部署应用2.2 检查现有策略 3. Cilium 策略实体3.1 创建 allow-all 网络策略3.2 在 Hubble CLI 中验证网络策略源3.3 …...
12.找到字符串中所有字母异位词
🧠 题目解析 题目描述: 给定两个字符串 s 和 p,找出 s 中所有 p 的字母异位词的起始索引。 返回的答案以数组形式表示。 字母异位词定义: 若两个字符串包含的字符种类和出现次数完全相同,顺序无所谓,则互为…...
OPenCV CUDA模块图像处理-----对图像执行 均值漂移滤波(Mean Shift Filtering)函数meanShiftFiltering()
操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C11 算法描述 在 GPU 上对图像执行 均值漂移滤波(Mean Shift Filtering),用于图像分割或平滑处理。 该函数将输入图像中的…...
Java 二维码
Java 二维码 **技术:**谷歌 ZXing 实现 首先添加依赖 <!-- 二维码依赖 --><dependency><groupId>com.google.zxing</groupId><artifactId>core</artifactId><version>3.5.1</version></dependency><de…...
第7篇:中间件全链路监控与 SQL 性能分析实践
7.1 章节导读 在构建数据库中间件的过程中,可观测性 和 性能分析 是保障系统稳定性与可维护性的核心能力。 特别是在复杂分布式场景中,必须做到: 🔍 追踪每一条 SQL 的生命周期(从入口到数据库执行)&#…...
论文阅读:LLM4Drive: A Survey of Large Language Models for Autonomous Driving
地址:LLM4Drive: A Survey of Large Language Models for Autonomous Driving 摘要翻译 自动驾驶技术作为推动交通和城市出行变革的催化剂,正从基于规则的系统向数据驱动策略转变。传统的模块化系统受限于级联模块间的累积误差和缺乏灵活性的预设规则。…...
ubuntu22.04有线网络无法连接,图标也没了
今天突然无法有线网络无法连接任何设备,并且图标都没了 错误案例 往上一顿搜索,试了很多博客都不行,比如 Ubuntu22.04右上角网络图标消失 最后解决的办法 下载网卡驱动,重新安装 操作步骤 查看自己网卡的型号 lspci | gre…...
0x-3-Oracle 23 ai-sqlcl 25.1 集成安装-配置和优化
是不是受够了安装了oracle database之后sqlplus的简陋,无法删除无法上下翻页的苦恼。 可以安装readline和rlwrap插件的话,配置.bahs_profile后也能解决上下翻页这些,但是很多生产环境无法安装rpm包。 oracle提供了sqlcl免费许可,…...
