回归预测 | Matlab实现RIME-CNN-SVM霜冰优化算法优化卷积神经网络-支持向量机的多变量回归预测
回归预测 | Matlab实现RIME-CNN-SVM霜冰优化算法优化卷积神经网络-支持向量机的多变量回归预测
目录
- 回归预测 | Matlab实现RIME-CNN-SVM霜冰优化算法优化卷积神经网络-支持向量机的多变量回归预测
- 效果一览
- 基本介绍
- 程序设计
- 参考资料
效果一览








基本介绍
1.RIME-CNN-SVM霜冰优化算法优化卷积神经网络-支持向量机的多变量回归预测 可直接运行Matlab;
2.评价指标包括: R2、MAE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。要求2021版本及以上。
3.2023年新算法霜冰优化算法RIME优化的参数为:CNN的批处理大小、学习率、正则化系数,能够避免人工选取参数的盲目性,有效提高其预测精度。
4.main.m为主程序,其他为函数文件,无需运行,data为数据,多输入单输出,数据回归预测,输入7个特征,输出1个变量,直接替换Excel数据即可用!注释清晰,适合新手小白~
程序设计
- 完整程序和数据获取方式:私信博主回复Matlab实现RIME-CNN-SVM霜冰优化算法优化卷积神经网络-支持向量机的多变量回归预测;
while it <= Max_iteritRimeFactor = (rand-0.5)*2*cos((pi*it/(Max_iter/10)))*(1-round(it*W/Max_iter)/W);%Parameters of Eq.(3),(4),(5)E =(it/Max_iter)^0.5;%Eq.(6)newRimepop = Rimepop;%Recording new populationsnormalized_rime_rates=normr(Rime_rates);%Parameters of Eq.(7)for i=1:Nfor j=1:dim%Soft-rime search strategyr1=rand();if r1< EnewRimepop(i,j)=Best_rime(1,j)+RimeFactor*((Ub(j)-Lb(j))*rand+Lb(j));%Eq.(3)end%Hard-rime puncture mechanismr2=rand();if r2<normalized_rime_rates(i)newRimepop(i,j)=Best_rime(1,j);%Eq.(7)endendendfor i=1:N%Boundary absorptionFlag4ub=newRimepop(i,:)>ub;Flag4lb=newRimepop(i,:)<lb;newRimepop(i,:)=(newRimepop(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb;newRime_rates(1,i)=fobj(newRimepop(i,:));%Positive greedy selection mechanismif newRime_rates(1,i)<Rime_rates(1,i)Rime_rates(1,i) = newRime_rates(1,i);Rimepop(i,:) = newRimepop(i,:);if newRime_rates(1,i)< Best_rime_rateBest_rime_rate=Rime_rates(1,i);Best_rime=Rimepop(i,:);endendend
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229
相关文章:
回归预测 | Matlab实现RIME-CNN-SVM霜冰优化算法优化卷积神经网络-支持向量机的多变量回归预测
回归预测 | Matlab实现RIME-CNN-SVM霜冰优化算法优化卷积神经网络-支持向量机的多变量回归预测 目录 回归预测 | Matlab实现RIME-CNN-SVM霜冰优化算法优化卷积神经网络-支持向量机的多变量回归预测效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.RIME-CNN-SVM霜冰优化算…...
使用Jaeger进行分布式跟踪:学习如何在服务网格中使用Jaeger来监控和分析请求的跟踪信息
🌷🍁 博主猫头虎 带您 Go to New World.✨🍁 🦄 博客首页——猫头虎的博客🎐 🐳《面试题大全专栏》 文章图文并茂🦕生动形象🦖简单易学!欢迎大家来踩踩~🌺 &a…...
添加多个单元对象
开发环境: Windows 11 家庭中文版Microsoft Visual Studio Community 2019VTK-9.3.0.rc0vtk-example参考代码 demo解决问题:不同阶段添加多个单元对象。 定义一个点集和一个单元集合,单元的类型可以是点、三角形、矩形、多边形等基本图形。只…...
十八、模型构建器(ModelBuilder)快速提取城市建成区——批量掩膜提取夜光数据、夜光数据转面、面数据融合、要素转Excel(基于参考比较法)
一、前言 前文实现批量投影栅格、转为整型,接下来重点实现批量提取夜光数据,夜光数据转面、夜光数据面数据融合、要素转Excel。将相关结果转为Excel,接下来就是在Excel中进行阈值的确定,阈值确定无法通过批量操作,除非采用其他方式,但是那样的学习成本较高,对于参考比较…...
HarmonyOS开发:基于http开源一个网络请求库
前言 网络封装的目的,在于简洁,使用起来更加的方便,也易于我们进行相关动作的设置,如果,我们不封装,那么每次请求,就会重复大量的代码逻辑,如下代码,是官方给出的案例&am…...
【杂记】Ubuntu20.04装系统,安装CUDA等
装20.04系统 安装系统的过程中,ROG的B660G主板,即使不关掉Secure boot也是可以的,不会影响正常安装,我这边出现问题的主要原因是使用了Ventoy制作的系统安装盘,导致每次一选择使用U盘的UEFI启动,就会跳回到…...
040-第三代软件开发-全新波形抓取算法
第三代软件开发-全新波形抓取算法 文章目录 第三代软件开发-全新波形抓取算法项目介绍全新波形抓取算法代码小解 关键字: Qt、 Qml、 抓波、 截获、 波形 项目介绍 欢迎来到我们的 QML & C 项目!这个项目结合了 QML(Qt Meta-Object …...
分享一个基于asp.net的供销社农产品商品销售系统的设计与实现(源码调试 lw开题报告ppt)
💕💕作者:计算机源码社 💕💕个人简介:本人七年开发经验,擅长Java、Python、PHP、.NET、微信小程序、爬虫、大数据等,大家有这一块的问题可以一起交流! 💕&…...
Java基于SpringBoot的线上考试系统
1 摘 要 基于 SpringBoot 的在线考试系统网站,功能模块具有课程管理、成绩管理、教师管理、学生管理、考试管理以及基本信息的管理等,通过将系统分为管理员、授课教师以及学生,从不同的身份角度来对用户提供便利,将科技与教学模式…...
flask socketio 实时传值至html上【需补充实例】
目前版本如下 Flask-Cors 4.0.0 Flask-SocketIO 5.3.6from flask_socketio import SocketIO, emit 跨域问题网上的普通方法无法解决。 参考这篇文章解决 Flask教程(十九)SocketIO - 迷途小书童的Note迷途小书童的Note (xugaoxiang.com) app Flask(__name__) socketio Sock…...
C# Onnx P2PNet 人群检测和计数
效果 项目 代码 using Microsoft.ML.OnnxRuntime; using Microsoft.ML.OnnxRuntime.Tensors; using OpenCvSharp; using System; using System.Collections.Generic; using System.Drawing; using System.Linq; using System.Text; using System.Windows.Forms;namespace Onnx…...
idea提交代码一直提示 log into gitee
解决idea提交代码一直提示 log into gitee问题 文章目录 打开setting->Version control->gitee,删除旧账号,重新配置账号,删除重新登录就好 打开setting->Version control->gitee,删除旧账号,重新配置账号,删除重新登…...
ATECLOUD如何进行电源模块各项性能指标的测试?
ATECLOUD平台进行电源模块各项性能指标的测试是通过以下步骤实现的: 连接测试设备:将测试设备与云计算服务器连接,实现数据采集和远程控制。测试设备包括示波器、电子负载、电源、万用表等,这些设备通过纳米BOX连接到云测试平台上…...
Mysql查询训练——50道题
--1.学生表 Student(SId,Sname,Sage,Ssex) --SId 学生编号,Sname 学生姓名,Sage 出生年月,Ssex 学生性别 --2.课程表 Course(CId,Cname,TId) --CId 课程编号,Cname 课程名称,TId 教师编号 --3.教师表 Teacher(TId,Tname) --TId 教师编号,Tname 教师姓名 --4.成绩表 SC(SId…...
学习笔记|正态分布|图形法|偏度和峰度|非参数检验法|《小白爱上SPSS》课程:SPSS第三讲 | 正态分布怎么检验?看这篇文章就够了
目录 学习目的软件版本原始文档为什么要假设它服从正态分布呢?t检验一、图形法1、频数分布直方图解读 2、正态Q-Q图操作解读 3、正态P-P图SPSS实战操作解读 二、偏度和峰度解读: 三、非参数检验法注意事项 四、规范表达五、小结划重点 学习目的 SPSS第三讲 | 正态…...
Android NDK开发详解之ndk-build 脚本
Android NDK开发详解之ndk-build 脚本 内部原理从命令行调用选项可调试 build 与发布 build要求 ndk-build 脚本使用 NDK 的基于 Make 的构建系统构建项目。我们针对 ndk-build 使用的 Android.mk 和 Application.mk 配置提供了更具体的文档。 内部原理 运行 ndk-build 脚本相…...
应用于智慧矿山的皮带跑偏视频分析AI算法
一、引言 随着科技的发展,人工智能技术已经在各个领域得到广泛应用。而在智慧矿山领域,皮带跑偏视频分析是其中一个重要的应用方向。本文将详细介绍皮带跑偏视频分析AI算法的原理,以期为智慧矿山的发展提供有益的参考。 二、算法原理 1. 视…...
vue3 UI组件优化之element-plus按需导入
如果不在意项目打包体积大小,正常来讲element-plus 是这样用的 import ElementPlus from element-plus //引入样式 import "element-plus/dist/index.css";app.use(ElementPlus);但是呢要是项目就用了几个弹窗提示什么的,全局引入包体积很大 …...
如何创建 Spring Boot 项目
如果有pom.xml有插件异常,可以先删除。 maven配置要配置好 然后yaml,再启动就行 server:port: 9991 spring:application:name: demo3参考 如何创建 Spring Boot 项目_创建springboot项目_良月初十♧的博客-CSDN博客...
【经验分享】openGauss容灾集群搭建
gs_sdr命令代码解读 背景 openGauss推出了容灾架构,相比之前的一个集群主从架构,而容灾架构是两个集群间的数据同步。为了更深入了解其原理,本文试图通过阅读gs_sdr命令相关的代码来学习下相关的各种操作。 1.容灾搭建过程可以参考…...
观成科技:隐蔽隧道工具Ligolo-ng加密流量分析
1.工具介绍 Ligolo-ng是一款由go编写的高效隧道工具,该工具基于TUN接口实现其功能,利用反向TCP/TLS连接建立一条隐蔽的通信信道,支持使用Let’s Encrypt自动生成证书。Ligolo-ng的通信隐蔽性体现在其支持多种连接方式,适应复杂网…...
Vue记事本应用实现教程
文章目录 1. 项目介绍2. 开发环境准备3. 设计应用界面4. 创建Vue实例和数据模型5. 实现记事本功能5.1 添加新记事项5.2 删除记事项5.3 清空所有记事 6. 添加样式7. 功能扩展:显示创建时间8. 功能扩展:记事项搜索9. 完整代码10. Vue知识点解析10.1 数据绑…...
基于FPGA的PID算法学习———实现PID比例控制算法
基于FPGA的PID算法学习 前言一、PID算法分析二、PID仿真分析1. PID代码2.PI代码3.P代码4.顶层5.测试文件6.仿真波形 总结 前言 学习内容:参考网站: PID算法控制 PID即:Proportional(比例)、Integral(积分&…...
PHP和Node.js哪个更爽?
先说结论,rust完胜。 php:laravel,swoole,webman,最开始在苏宁的时候写了几年php,当时觉得php真的是世界上最好的语言,因为当初活在舒适圈里,不愿意跳出来,就好比当初活在…...
在鸿蒙HarmonyOS 5中使用DevEco Studio实现录音机应用
1. 项目配置与权限设置 1.1 配置module.json5 {"module": {"requestPermissions": [{"name": "ohos.permission.MICROPHONE","reason": "录音需要麦克风权限"},{"name": "ohos.permission.WRITE…...
什么?连接服务器也能可视化显示界面?:基于X11 Forwarding + CentOS + MobaXterm实战指南
文章目录 什么是X11?环境准备实战步骤1️⃣ 服务器端配置(CentOS)2️⃣ 客户端配置(MobaXterm)3️⃣ 验证X11 Forwarding4️⃣ 运行自定义GUI程序(Python示例)5️⃣ 成功效果 核心…...
【Go语言基础【13】】函数、闭包、方法
文章目录 零、概述一、函数基础1、函数基础概念2、参数传递机制3、返回值特性3.1. 多返回值3.2. 命名返回值3.3. 错误处理 二、函数类型与高阶函数1. 函数类型定义2. 高阶函数(函数作为参数、返回值) 三、匿名函数与闭包1. 匿名函数(Lambda函…...
Chromium 136 编译指南 Windows篇:depot_tools 配置与源码获取(二)
引言 工欲善其事,必先利其器。在完成了 Visual Studio 2022 和 Windows SDK 的安装后,我们即将接触到 Chromium 开发生态中最核心的工具——depot_tools。这个由 Google 精心打造的工具集,就像是连接开发者与 Chromium 庞大代码库的智能桥梁…...
前端高频面试题2:浏览器/计算机网络
本专栏相关链接 前端高频面试题1:HTML/CSS 前端高频面试题2:浏览器/计算机网络 前端高频面试题3:JavaScript 1.什么是强缓存、协商缓存? 强缓存: 当浏览器请求资源时,首先检查本地缓存是否命中。如果命…...
