R语言使用surveyCV包对NHANES数据(复杂调查加权数据)进行10折交叉验证
美国国家健康与营养调查( NHANES, National Health and Nutrition Examination Survey)是一项基于人群的横断面调查,旨在收集有关美国家庭人口健康和营养的信息。
地址为:https://wwwn.cdc.gov/nchs/nhanes/Default.aspx
既往咱们通过多篇文章对复杂加权数据的线性模型、逻辑回归模型、生存分析模型进行了分析。我们在建立数据模型后通常希望在外部数据验证模型的检验能力。然而当没有外部数据可以验证的时候,交叉验证也不失为一种方法。交叉验验证(交叉验证,CV)则是一种评估模型泛化能力的方法,广泛应用中于数证据采挖掘和机器学习领域,在交叉验证通常将数据集分为两部分,一部分为训练集,用于建立预测模型;另一部分为测试集,用于测试该模型的泛化能力。
咱们既往文章《基于R语言进行K折交叉验证》介绍了普通数据交叉验证,今天咱们来介绍一下使用surveyCV包进行复杂加权数据交叉验证,
该包通过在创建 CV 折叠以及计算测试集损失估计时考虑分层、聚类、FPC 的调查权重MSE(均方误差),对复杂的调查数据实现交叉验证 (CV)。模型,或逻辑模型的二元交叉熵)。
咱们先导入R包和数据
library(surveyCV)
library(survey)
library(ISLR)
data("api")
这次使用survey自带的加州学生的数据,包含有学生的成绩和其他数据。这个数据集带有6个数据,咱们使用的是apistrat数据
假设咱们想了解api00和ell线性关系,nfolds代表你想用多少折,其他都是一些调查函数的参数。
咱们先写出它的函数,这是一个默认线性函数
a<-"api00~ell"
cv.svy(apistrat, a,nfolds = 10, strataID = "stype", weightsID = "pw", fpcID = "fpc")
这样结果就出来了,这里的mean相当于MSE的平均值,表示误差的平均值,它可以有助于改善我们的模型,它和单用svymean函数这种算法是完全不一样的
如果咱们想了解多个模型
cv.svy(apistrat, c("api00~ell","api00~ell+meals","api00~ell+meals+mobility"),nfolds = 10, strataID = "stype", weightsID = "pw", fpcID = "fpc")
这样就轻松出结果了,非常方便好用。我们可以看到添加协变量以后,MSE出现明显变化,变小了,表明添加协变量有助于改善MSE。
如果我们想指定集群而不是分层,更改一下clusterID这个变量,也非常方便
cv.svy(apiclus1, c("api00~ell","api00~ell+meals","api00~ell+meals+mobility"),nfolds = 10, clusterID = "dnum", weightsID = "pw", fpcID = "fpc")
如果咱们是有调查函数的,咱们需要用到cv.svydesign这个函数,指定一下就可以了
dstrat <- svydesign(id = ~1, strata = ~stype, weights = ~pw, data = apistrat, fpc = ~fpc)
cv.svydesign(formulae = c("api00~ell","api00~ell+meals","api00~ell+meals+mobility"),design_object = dstrat, nfolds = 10)
如果是已经生成了svyglm模型的,咱们需要使用cv.svyglm这个函数指定
glmstrat <- svyglm(api00 ~ ell+meals+mobility, design = dstrat)
cv.svyglm(glmstrat, nfolds = 10)
如果咱们是逻辑回归而不是线性回归,先生成一个调查函数
library(splines)
NSFG.svydes <- svydesign(id = ~SECU, strata = ~strata, nest = TRUE,weights = ~wgt, data = NSFG_data)
生成结果
NSFG.svyglm.logistic <- svyglm(LBW ~ ns(age, df = 3), design = NSFG.svydes,family = quasibinomial())
cv.svyglm(glm_object = NSFG.svyglm.logistic, nfolds = 4)
在这种情况下,平均列显示二进制交叉熵损失的平均值。
相关文章:

R语言使用surveyCV包对NHANES数据(复杂调查加权数据)进行10折交叉验证
美国国家健康与营养调查( NHANES, National Health and Nutrition Examination Survey)是一项基于人群的横断面调查,旨在收集有关美国家庭人口健康和营养的信息。 地址为:https://wwwn.cdc.gov/nchs/nhanes/Default.aspx 既往咱们…...

WOS与CNKI数据库的citespace分析教程及常见问题解决
本教程为面向新手的基于citespace的数据可视化教程,旨在帮助大家更快了解行业前沿的研究内容。 获取最新版本的citespace软件 在citespace官网下载最新的版本(如果是老版本,可能会提示让你去官网更新为最新版,老版本不再提供服务…...

NEFU数字图像处理(三)图像分割
一、图像分割的基本概念 1.1专有名词 前景和背景 在图像分割中,我们通常需要将图像分为前景和背景两个部分。前景是指图像中我们感兴趣、要分割出来的部分,背景是指和前景不相关的部分。例如,对于一张人物照片,人物就是前景&…...

UEditorPlus v3.6.0 图标补全,精简代码,快捷操作重构,问题修复
UEditor是由百度开发的所见即所得的开源富文本编辑器,基于MIT开源协议,该富文本编辑器帮助不少网站开发者解决富文本编辑器的难点。 UEditorPlus 是有 ModStart 团队基于 UEditor 二次开发的富文本编辑器,主要做了样式的定制,更符…...

C++ Set
定义 set不同于vector,strin,list这种存储容器,set是一种关联式容器,底层是搜二叉; 功能 set可以确定唯一的值,可以排序去重。 接口 insert() #include <iostream> #include<set> using namespace std;int main…...

基于知识库的chatbot或者FAQ
背景 最近突然想做一个基于自己的知识库(knowlegebase)的chatbot或者FAQ的项目。未来如果可以在公司用chatgpt或者gpt3.5之后的模型的话,还可以利用gpt强大的语言理解力和搜索出来的用户问题的相关业务文档来回答用户在业务中的问题。 Chat…...

ZOC8 for Mac:超越期待的终端仿真器
在Mac上,一个优秀的终端仿真器是每位开发者和系统管理员的必备工具。ZOC8,作为一款广受好评的终端仿真器,以其强大的功能和易用性,已经在Mac用户中积累了良好的口碑。本文将为您详细介绍ZOC8的各项特性,以及为什么它会…...
织梦dedecms后台档案列表显示空白或显示不了文章的解决方法
织梦dedecms后台档案列表显示空白或显示不了文章的解决方法 dede/content_list.php空白解决方法如下 dede/content_list.php空白 在DEDE后台可以查看栏目文章,但是所有档案列表却为空白或者显示不了文章,如图所示: 后来找到dede/content_list.php,看了下…...

10本值得阅读的量化交易书籍
什么是量化交易? 量化交易是利用数学模型或算法来创建交易策略并进行交易。量化交易通常由大型机构交易员或对冲基金雇用,他们雇用大量的博士和工程师团队。从历史上看,量化交易领域一直非常隐秘,有效的想法往往受到公司的严密保…...
c++通过对象的地址初始化指针,需要对指针进行释放么(企业链表衍生)
在C中,如果你通过对象的地址来初始化指针,通常情况下是不需要手动释放指针的。这是因为对象的生存期与指针所指向的对象的生存期相关联。当对象超出其作用域或被销毁时,指向该对象的指针也会自动成为悬挂指针,这种情况下再访问该指…...
CentOS安装MySQL
参考官方链接:https://dev.mysql.com/doc/refman/8.0/en/linux-installation-rpm.html CentOS版本 [rootlocalhost ~]# cat /etc/redhat-release CentOS Linux release 7.9.2009 (Core) 下载MySQL安装包(版本:8.0.35) 访问地址…...

AI:45-基于深度学习的声纹识别
🚀 本文选自专栏:AI领域专栏 从基础到实践,深入了解算法、案例和最新趋势。无论你是初学者还是经验丰富的数据科学家,通过案例和项目实践,掌握核心概念和实用技能。每篇案例都包含代码实例,详细讲解供大家学习。 📌📌📌本专栏包含以下学习方向: 机器学习、深度学…...
Spring-cloud-openfeign拦截器RequestInterceptor接口
RequestInterceptor接口位于包io.github.openfeign-core下,使用Spring Cloud Feign的时候会自动依赖这个包 下面的代码会在每次调用Feign1的m1方法时,向HTTP头追加键值对武汉3:晴川历历汉阳树 FeignClient(value "feignA", url "XXX或…...

自动化测试开发 —— 如何封装自动化测试框架?
封装自动化测试框架,测试人员不用关注框架的底层实现,根据指定的规则进行测试用例的创建、执行即可,这样就降低了自动化测试门槛,能解放出更多的人力去做更深入的测试工作。本篇文章就来介绍下,如何封装自动化测试框架…...

Leetcode—2.两数相加【中等】
2023每日刷题(十五) Leetcode—2.两数相加 迭代法实现代码 /*** Definition for singly-linked list.* struct ListNode {* int val;* struct ListNode *next;* };*/ struct ListNode* addTwoNumbers(struct ListNode* l1, struct ListNode* l…...
拷贝音频、视频、word等二进制文件的实现方法,不掉帧
拷贝音频、视频、word等二进制文件的实现方法: 演示使用BufferedOutputStream 和 BufferedInputStream 使用 使用他们,可以完成二进制文件 思考:字节流可以操作二进制文件,可以操作文本文件吗?True public class B…...
dmfldr-快速装载-载入(DM8:达梦数据库)
dmfldr-快速装载-DM8:达梦数据库 介绍1 准备数据文件2 根据数据文件在数据库创建表3 根据数据文件,配置快速装载的控制文件4 在数据库bin执行目录执行命令5 日志6 达梦数据库学习使用列表 介绍 DM 提供了快速装载工具:dmfldr;通过使用快速装载工具能够把…...

Postman测试金蝶云星空Webapi【协同开发云】
文章目录 Postman测试金蝶云星空Webapi【协同开发云】环境说明业务背景大致流程具体操作请求登录接口请求标准接口查看保存提交审核反审核撤销 请求自定义接口参数是字符串参数是实体类单个实体类实体类是集合 其他 Postman测试金蝶云星空Webapi【协同开发云】 环境说明 金蝶…...
mongo常用操作符及查询例子
比较操作符: $eq:匹配字段值等于指定值。 $ne:匹配字段值不等于指定值。 $gt:匹配字段值大于指定值。 $gte:匹配字段值大于或等于指定值。 $lt:匹配字段值小于指定值。 $lte:匹配字段值小于或等…...
41.排序练习题(王道2023数据结构第8章综合练习)
试题1(王道8.3.3节综合练习2): 编写双向冒泡排序算法,在正反两个方向交替扫描。即第一趟把关键字最大的元素放在序列的最后面,第二趟把关键字最小的元素放在序列最前面,如此反复。 首先实现冒泡排序&…...

接口测试中缓存处理策略
在接口测试中,缓存处理策略是一个关键环节,直接影响测试结果的准确性和可靠性。合理的缓存处理策略能够确保测试环境的一致性,避免因缓存数据导致的测试偏差。以下是接口测试中常见的缓存处理策略及其详细说明: 一、缓存处理的核…...

Unity3D中Gfx.WaitForPresent优化方案
前言 在Unity中,Gfx.WaitForPresent占用CPU过高通常表示主线程在等待GPU完成渲染(即CPU被阻塞),这表明存在GPU瓶颈或垂直同步/帧率设置问题。以下是系统的优化方案: 对惹,这里有一个游戏开发交流小组&…...

边缘计算医疗风险自查APP开发方案
核心目标:在便携设备(智能手表/家用检测仪)部署轻量化疾病预测模型,实现低延迟、隐私安全的实时健康风险评估。 一、技术架构设计 #mermaid-svg-iuNaeeLK2YoFKfao {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg…...

2.Vue编写一个app
1.src中重要的组成 1.1main.ts // 引入createApp用于创建应用 import { createApp } from "vue"; // 引用App根组件 import App from ./App.vue;createApp(App).mount(#app)1.2 App.vue 其中要写三种标签 <template> <!--html--> </template>…...

页面渲染流程与性能优化
页面渲染流程与性能优化详解(完整版) 一、现代浏览器渲染流程(详细说明) 1. 构建DOM树 浏览器接收到HTML文档后,会逐步解析并构建DOM(Document Object Model)树。具体过程如下: (…...

Springcloud:Eureka 高可用集群搭建实战(服务注册与发现的底层原理与避坑指南)
引言:为什么 Eureka 依然是存量系统的核心? 尽管 Nacos 等新注册中心崛起,但金融、电力等保守行业仍有大量系统运行在 Eureka 上。理解其高可用设计与自我保护机制,是保障分布式系统稳定的必修课。本文将手把手带你搭建生产级 Eur…...
什么是EULA和DPA
文章目录 EULA(End User License Agreement)DPA(Data Protection Agreement)一、定义与背景二、核心内容三、法律效力与责任四、实际应用与意义 EULA(End User License Agreement) 定义: EULA即…...
Element Plus 表单(el-form)中关于正整数输入的校验规则
目录 1 单个正整数输入1.1 模板1.2 校验规则 2 两个正整数输入(联动)2.1 模板2.2 校验规则2.3 CSS 1 单个正整数输入 1.1 模板 <el-formref"formRef":model"formData":rules"formRules"label-width"150px"…...

浪潮交换机配置track检测实现高速公路收费网络主备切换NQA
浪潮交换机track配置 项目背景高速网络拓扑网络情况分析通信线路收费网络路由 收费汇聚交换机相应配置收费汇聚track配置 项目背景 在实施省内一条高速公路时遇到的需求,本次涉及的主要是收费汇聚交换机的配置,浪潮网络设备在高速项目很少,通…...
LangFlow技术架构分析
🔧 LangFlow 的可视化技术栈 前端节点编辑器 底层框架:基于 (一个现代化的 React 节点绘图库) 功能: 拖拽式构建 LangGraph 状态机 实时连线定义节点依赖关系 可视化调试循环和分支逻辑 与 LangGraph 的深…...