R语言使用surveyCV包对NHANES数据(复杂调查加权数据)进行10折交叉验证
美国国家健康与营养调查( NHANES, National Health and Nutrition Examination Survey)是一项基于人群的横断面调查,旨在收集有关美国家庭人口健康和营养的信息。
地址为:https://wwwn.cdc.gov/nchs/nhanes/Default.aspx
既往咱们通过多篇文章对复杂加权数据的线性模型、逻辑回归模型、生存分析模型进行了分析。我们在建立数据模型后通常希望在外部数据验证模型的检验能力。然而当没有外部数据可以验证的时候,交叉验证也不失为一种方法。交叉验验证(交叉验证,CV)则是一种评估模型泛化能力的方法,广泛应用中于数证据采挖掘和机器学习领域,在交叉验证通常将数据集分为两部分,一部分为训练集,用于建立预测模型;另一部分为测试集,用于测试该模型的泛化能力。
咱们既往文章《基于R语言进行K折交叉验证》介绍了普通数据交叉验证,今天咱们来介绍一下使用surveyCV包进行复杂加权数据交叉验证,
该包通过在创建 CV 折叠以及计算测试集损失估计时考虑分层、聚类、FPC 的调查权重MSE(均方误差),对复杂的调查数据实现交叉验证 (CV)。模型,或逻辑模型的二元交叉熵)。
咱们先导入R包和数据
library(surveyCV)
library(survey)
library(ISLR)
data("api")
这次使用survey自带的加州学生的数据,包含有学生的成绩和其他数据。这个数据集带有6个数据,咱们使用的是apistrat数据
假设咱们想了解api00和ell线性关系,nfolds代表你想用多少折,其他都是一些调查函数的参数。
咱们先写出它的函数,这是一个默认线性函数
a<-"api00~ell"
cv.svy(apistrat, a,nfolds = 10, strataID = "stype", weightsID = "pw", fpcID = "fpc")
这样结果就出来了,这里的mean相当于MSE的平均值,表示误差的平均值,它可以有助于改善我们的模型,它和单用svymean函数这种算法是完全不一样的
如果咱们想了解多个模型
cv.svy(apistrat, c("api00~ell","api00~ell+meals","api00~ell+meals+mobility"),nfolds = 10, strataID = "stype", weightsID = "pw", fpcID = "fpc")
这样就轻松出结果了,非常方便好用。我们可以看到添加协变量以后,MSE出现明显变化,变小了,表明添加协变量有助于改善MSE。
如果我们想指定集群而不是分层,更改一下clusterID这个变量,也非常方便
cv.svy(apiclus1, c("api00~ell","api00~ell+meals","api00~ell+meals+mobility"),nfolds = 10, clusterID = "dnum", weightsID = "pw", fpcID = "fpc")
如果咱们是有调查函数的,咱们需要用到cv.svydesign这个函数,指定一下就可以了
dstrat <- svydesign(id = ~1, strata = ~stype, weights = ~pw, data = apistrat, fpc = ~fpc)
cv.svydesign(formulae = c("api00~ell","api00~ell+meals","api00~ell+meals+mobility"),design_object = dstrat, nfolds = 10)
如果是已经生成了svyglm模型的,咱们需要使用cv.svyglm这个函数指定
glmstrat <- svyglm(api00 ~ ell+meals+mobility, design = dstrat)
cv.svyglm(glmstrat, nfolds = 10)
如果咱们是逻辑回归而不是线性回归,先生成一个调查函数
library(splines)
NSFG.svydes <- svydesign(id = ~SECU, strata = ~strata, nest = TRUE,weights = ~wgt, data = NSFG_data)
生成结果
NSFG.svyglm.logistic <- svyglm(LBW ~ ns(age, df = 3), design = NSFG.svydes,family = quasibinomial())
cv.svyglm(glm_object = NSFG.svyglm.logistic, nfolds = 4)
在这种情况下,平均列显示二进制交叉熵损失的平均值。
相关文章:

R语言使用surveyCV包对NHANES数据(复杂调查加权数据)进行10折交叉验证
美国国家健康与营养调查( NHANES, National Health and Nutrition Examination Survey)是一项基于人群的横断面调查,旨在收集有关美国家庭人口健康和营养的信息。 地址为:https://wwwn.cdc.gov/nchs/nhanes/Default.aspx 既往咱们…...

WOS与CNKI数据库的citespace分析教程及常见问题解决
本教程为面向新手的基于citespace的数据可视化教程,旨在帮助大家更快了解行业前沿的研究内容。 获取最新版本的citespace软件 在citespace官网下载最新的版本(如果是老版本,可能会提示让你去官网更新为最新版,老版本不再提供服务…...

NEFU数字图像处理(三)图像分割
一、图像分割的基本概念 1.1专有名词 前景和背景 在图像分割中,我们通常需要将图像分为前景和背景两个部分。前景是指图像中我们感兴趣、要分割出来的部分,背景是指和前景不相关的部分。例如,对于一张人物照片,人物就是前景&…...

UEditorPlus v3.6.0 图标补全,精简代码,快捷操作重构,问题修复
UEditor是由百度开发的所见即所得的开源富文本编辑器,基于MIT开源协议,该富文本编辑器帮助不少网站开发者解决富文本编辑器的难点。 UEditorPlus 是有 ModStart 团队基于 UEditor 二次开发的富文本编辑器,主要做了样式的定制,更符…...

C++ Set
定义 set不同于vector,strin,list这种存储容器,set是一种关联式容器,底层是搜二叉; 功能 set可以确定唯一的值,可以排序去重。 接口 insert() #include <iostream> #include<set> using namespace std;int main…...

基于知识库的chatbot或者FAQ
背景 最近突然想做一个基于自己的知识库(knowlegebase)的chatbot或者FAQ的项目。未来如果可以在公司用chatgpt或者gpt3.5之后的模型的话,还可以利用gpt强大的语言理解力和搜索出来的用户问题的相关业务文档来回答用户在业务中的问题。 Chat…...

ZOC8 for Mac:超越期待的终端仿真器
在Mac上,一个优秀的终端仿真器是每位开发者和系统管理员的必备工具。ZOC8,作为一款广受好评的终端仿真器,以其强大的功能和易用性,已经在Mac用户中积累了良好的口碑。本文将为您详细介绍ZOC8的各项特性,以及为什么它会…...
织梦dedecms后台档案列表显示空白或显示不了文章的解决方法
织梦dedecms后台档案列表显示空白或显示不了文章的解决方法 dede/content_list.php空白解决方法如下 dede/content_list.php空白 在DEDE后台可以查看栏目文章,但是所有档案列表却为空白或者显示不了文章,如图所示: 后来找到dede/content_list.php,看了下…...

10本值得阅读的量化交易书籍
什么是量化交易? 量化交易是利用数学模型或算法来创建交易策略并进行交易。量化交易通常由大型机构交易员或对冲基金雇用,他们雇用大量的博士和工程师团队。从历史上看,量化交易领域一直非常隐秘,有效的想法往往受到公司的严密保…...
c++通过对象的地址初始化指针,需要对指针进行释放么(企业链表衍生)
在C中,如果你通过对象的地址来初始化指针,通常情况下是不需要手动释放指针的。这是因为对象的生存期与指针所指向的对象的生存期相关联。当对象超出其作用域或被销毁时,指向该对象的指针也会自动成为悬挂指针,这种情况下再访问该指…...
CentOS安装MySQL
参考官方链接:https://dev.mysql.com/doc/refman/8.0/en/linux-installation-rpm.html CentOS版本 [rootlocalhost ~]# cat /etc/redhat-release CentOS Linux release 7.9.2009 (Core) 下载MySQL安装包(版本:8.0.35) 访问地址…...

AI:45-基于深度学习的声纹识别
🚀 本文选自专栏:AI领域专栏 从基础到实践,深入了解算法、案例和最新趋势。无论你是初学者还是经验丰富的数据科学家,通过案例和项目实践,掌握核心概念和实用技能。每篇案例都包含代码实例,详细讲解供大家学习。 📌📌📌本专栏包含以下学习方向: 机器学习、深度学…...
Spring-cloud-openfeign拦截器RequestInterceptor接口
RequestInterceptor接口位于包io.github.openfeign-core下,使用Spring Cloud Feign的时候会自动依赖这个包 下面的代码会在每次调用Feign1的m1方法时,向HTTP头追加键值对武汉3:晴川历历汉阳树 FeignClient(value "feignA", url "XXX或…...

自动化测试开发 —— 如何封装自动化测试框架?
封装自动化测试框架,测试人员不用关注框架的底层实现,根据指定的规则进行测试用例的创建、执行即可,这样就降低了自动化测试门槛,能解放出更多的人力去做更深入的测试工作。本篇文章就来介绍下,如何封装自动化测试框架…...

Leetcode—2.两数相加【中等】
2023每日刷题(十五) Leetcode—2.两数相加 迭代法实现代码 /*** Definition for singly-linked list.* struct ListNode {* int val;* struct ListNode *next;* };*/ struct ListNode* addTwoNumbers(struct ListNode* l1, struct ListNode* l…...
拷贝音频、视频、word等二进制文件的实现方法,不掉帧
拷贝音频、视频、word等二进制文件的实现方法: 演示使用BufferedOutputStream 和 BufferedInputStream 使用 使用他们,可以完成二进制文件 思考:字节流可以操作二进制文件,可以操作文本文件吗?True public class B…...
dmfldr-快速装载-载入(DM8:达梦数据库)
dmfldr-快速装载-DM8:达梦数据库 介绍1 准备数据文件2 根据数据文件在数据库创建表3 根据数据文件,配置快速装载的控制文件4 在数据库bin执行目录执行命令5 日志6 达梦数据库学习使用列表 介绍 DM 提供了快速装载工具:dmfldr;通过使用快速装载工具能够把…...

Postman测试金蝶云星空Webapi【协同开发云】
文章目录 Postman测试金蝶云星空Webapi【协同开发云】环境说明业务背景大致流程具体操作请求登录接口请求标准接口查看保存提交审核反审核撤销 请求自定义接口参数是字符串参数是实体类单个实体类实体类是集合 其他 Postman测试金蝶云星空Webapi【协同开发云】 环境说明 金蝶…...
mongo常用操作符及查询例子
比较操作符: $eq:匹配字段值等于指定值。 $ne:匹配字段值不等于指定值。 $gt:匹配字段值大于指定值。 $gte:匹配字段值大于或等于指定值。 $lt:匹配字段值小于指定值。 $lte:匹配字段值小于或等…...
41.排序练习题(王道2023数据结构第8章综合练习)
试题1(王道8.3.3节综合练习2): 编写双向冒泡排序算法,在正反两个方向交替扫描。即第一趟把关键字最大的元素放在序列的最后面,第二趟把关键字最小的元素放在序列最前面,如此反复。 首先实现冒泡排序&…...
Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以?
Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以? 在 Golang 的面试中,map 类型的使用是一个常见的考点,其中对 key 类型的合法性 是一道常被提及的基础却很容易被忽视的问题。本文将带你深入理解 Golang 中…...

vscode(仍待补充)
写于2025 6.9 主包将加入vscode这个更权威的圈子 vscode的基本使用 侧边栏 vscode还能连接ssh? debug时使用的launch文件 1.task.json {"tasks": [{"type": "cppbuild","label": "C/C: gcc.exe 生成活动文件"…...
鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院挂号小程序
一、开发准备 环境搭建: 安装DevEco Studio 3.0或更高版本配置HarmonyOS SDK申请开发者账号 项目创建: File > New > Create Project > Application (选择"Empty Ability") 二、核心功能实现 1. 医院科室展示 /…...

C# 类和继承(抽象类)
抽象类 抽象类是指设计为被继承的类。抽象类只能被用作其他类的基类。 不能创建抽象类的实例。抽象类使用abstract修饰符声明。 抽象类可以包含抽象成员或普通的非抽象成员。抽象类的成员可以是抽象成员和普通带 实现的成员的任意组合。抽象类自己可以派生自另一个抽象类。例…...
三体问题详解
从物理学角度,三体问题之所以不稳定,是因为三个天体在万有引力作用下相互作用,形成一个非线性耦合系统。我们可以从牛顿经典力学出发,列出具体的运动方程,并说明为何这个系统本质上是混沌的,无法得到一般解…...
Axios请求超时重发机制
Axios 超时重新请求实现方案 在 Axios 中实现超时重新请求可以通过以下几种方式: 1. 使用拦截器实现自动重试 import axios from axios;// 创建axios实例 const instance axios.create();// 设置超时时间 instance.defaults.timeout 5000;// 最大重试次数 cons…...
实现弹窗随键盘上移居中
实现弹窗随键盘上移的核心思路 在Android中,可以通过监听键盘的显示和隐藏事件,动态调整弹窗的位置。关键点在于获取键盘高度,并计算剩余屏幕空间以重新定位弹窗。 // 在Activity或Fragment中设置键盘监听 val rootView findViewById<V…...

pikachu靶场通关笔记22-1 SQL注入05-1-insert注入(报错法)
目录 一、SQL注入 二、insert注入 三、报错型注入 四、updatexml函数 五、源码审计 六、insert渗透实战 1、渗透准备 2、获取数据库名database 3、获取表名table 4、获取列名column 5、获取字段 本系列为通过《pikachu靶场通关笔记》的SQL注入关卡(共10关࿰…...

ABAP设计模式之---“简单设计原则(Simple Design)”
“Simple Design”(简单设计)是软件开发中的一个重要理念,倡导以最简单的方式实现软件功能,以确保代码清晰易懂、易维护,并在项目需求变化时能够快速适应。 其核心目标是避免复杂和过度设计,遵循“让事情保…...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比
在机器学习的回归分析中,损失函数的选择对模型性能具有决定性影响。均方误差(MSE)作为经典的损失函数,在处理干净数据时表现优异,但在面对包含异常值的噪声数据时,其对大误差的二次惩罚机制往往导致模型参数…...