当前位置: 首页 > news >正文

PyTorch入门学习(十):神经网络-非线性激活

目录

一、简介

二、常见的非线性激活函数

三、实现非线性激活函数

四、示例:应用非线性激活函数


一、简介

在神经网络中,激活函数的主要目的是引入非线性特性,从而使网络能够对非线性数据建模。如果只使用线性变换,那么整个神经网络就会退化为一个线性模型,因为线性函数的组合仍然是线性的。非线性激活函数通过引入非线性性质,使神经网络能够适应更复杂的数据。

二、常见的非线性激活函数

ReLU(Rectified Linear Unit)

ReLU 是一种广泛使用的非线性激活函数。它的数学表达式如下:

f(x) = max(0, x)

ReLU 将小于零的输入值设为零,而大于零的输入值保持不变。这种性质使得神经网络能够学习到稀疏特征,加速训练,以及更好地处理梯度消失问题。在 PyTorch 中,可以使用 torch.nn.ReLU() 实现 ReLU 激活。

Sigmoid 函数

Sigmoid 函数是另一种非线性激活函数,它的数学表达式如下:

f(x) = 1 / (1 + exp(-x))

Sigmoid 函数将输入值映射到 0 到 1 之间,它在二元分类问题中广泛使用。然而,Sigmoid 函数在深度神经网络中容易出现梯度消失问题。在 PyTorch 中,可以使用 torch.nn.Sigmoid() 实现 Sigmoid 激活。

三、实现非线性激活函数

在 PyTorch 中,实现非线性激活函数非常简单。首先定义一个继承自 nn.Module 的类,然后在 forward 方法中应用所需的激活函数。下面是一个使用 ReLU 和 Sigmoid 激活函数的示例:

import torch
from torch import nn
from torch.nn import ReLU, Sigmoidclass MyModel(nn.Module):def __init__(self):super(MyModel, self).__init()self.relu = ReLU()self.sigmoid = Sigmoid()def forward(self, x):x_relu = self.relu(x)x_sigmoid = self.sigmoid(x)return x_relu, x_sigmoid

在上面的示例中,首先导入必要的库,然后定义了一个自定义模型 MyModel,它包含了 ReLU 和 Sigmoid 激活函数。在 forward 方法中,分别应用了这两个激活函数。

四、示例:应用非线性激活函数

下面将看到一个具体的示例,把非线性激活函数应用于图像数据。然后使用 PyTorch 和 CIFAR-10 数据集,这是一个广泛使用的图像分类数据集。最后使用 ReLU 和 Sigmoid 激活函数,并使用 TensorBoard 可视化结果。

import torch
from torch import nn
from torch.nn import ReLU, Sigmoid
from torch.utils.tensorboard import SummaryWriter
from torch.utils.data import DataLoader
import torchvision.datasets# 加载 CIFAR-10 数据集
dataset = torchvision.datasets.CIFAR10("D:\\Python_Project\\pytorch\\dataset2", train=False, transform=torchvision.transforms.ToTensor(), download=True)
dataloader = DataLoader(dataset, batch_size=64)# 定义自定义模型
class MyModel(nn.Module):def __init__(self):super(MyModel, self).__init__()self.relu = ReLU()self.sigmoid = Sigmoid()def forward(self, x):x_relu = self.relu(x)x_sigmoid = self.sigmoid(x)return x_relu, x_sigmoid# 创建模型实例和 TensorBoard 编写器
model = MyModel()
writer = SummaryWriter("logs")
step = 0# 遍历数据集并应用模型
for data in dataloader:imgs, targets = dataoutput_relu, output_sigmoid = model(imgs)writer.add_images("input", imgs, step)writer.add_images("output_relu", output_relu, step)writer.add_images("output_sigmoid", output_sigmoid, step)step += 1writer.close()

在上面的示例中,首先加载 CIFAR-10 数据集,然后定义了一个自定义模型 MyModel,其中包含了 ReLU 和 Sigmoid 激活函数。遍历数据集,将输入图像和经过激活函数处理后的输出图像写入 TensorBoard,以便进行可视化。

通过这个示例,可以看到非线性激活函数如何改变输入数据,引入非线性特性,从而增强神经网络的建模能力。

参考资料:

视频教程:PyTorch深度学习快速入门教程(绝对通俗易懂!)【小土堆】

相关文章:

PyTorch入门学习(十):神经网络-非线性激活

目录 一、简介 二、常见的非线性激活函数 三、实现非线性激活函数 四、示例:应用非线性激活函数 一、简介 在神经网络中,激活函数的主要目的是引入非线性特性,从而使网络能够对非线性数据建模。如果只使用线性变换,那么整个神…...

《golang设计模式》第三部分·行为型模式-03-解释器模式(Interpreter)

文章目录 1. 概述1.1 角色1.2 类图1.3 优缺点 2. 代码示例2.1 设计2.2 代码2.3 类图 1. 概述 解释器模式(Interpreter)是用于表达语言语法树和封装语句解释(或运算)行为的对象。 1.1 角色 AbstractExpression(抽象表…...

Windows个性化颜色睡眠后经常改变

问题再现 我把系统颜色换成了一种红色,结果每次再打开电脑又变回去了(绿色); 原因是因为wallpaper engine在捣蛋 需要禁用修改windows配色这一块选项; 完事!原来是wallpaper engine的问题;...

calico ipam使用

calico ipam使用 前面的文章pod获取ip地址的过程中提到过calico使用的IP地址的管理模块是其自己开发的模块calico-ipam,本篇文章来讲述下其具体用法。 一、环境信息 版本信息 本环境使用版本是k8s 1.25.3 [rootnode1 ~]# kubectl get node NAME STATUS ROLES …...

Redis系统学习(高级篇)-Redis持久化-AOF方式

目录 一、是什么AOF? 二、AOF如何开启 以及触发策略有哪些 三、AOF文件重写 四、AOF与RDB对比 一、是什么AOF? 就是通过每次记录写操作,最终通过来依次这些命令来达到恢复数据的目的 二、AOF如何开启 以及触发策略有哪些 save "&q…...

云安全-云原生基于容器漏洞的逃逸自动化手法(CDK check)

0x00 docker逃逸的方法种类 1、不安全的配置: 容器危险挂载(挂载procfs,Scoket) 特权模式启动的提权(privileged) 2、docker容器自身的漏洞 3、linux系统内核漏洞 这里参考Twiki的云安全博客,下…...

精选10款Python可视化工具,请查收

今天我们会介绍一下10个适用于多个学科的Python数据可视化库,其中有名气很大的也有鲜为人知的。 1、matplotlib matplotlib 是Python可视化程序库的泰斗。经过十几年它仍然是Python使用者最常用的画图库。它的设计和在1980年代被设计的商业化程序语言MATLAB非常接近…...

大数据(21)-skew-GroupBy

&&大数据学习&& 🔥系列专栏: 👑哲学语录: 承认自己的无知,乃是开启智慧的大门 💖如果觉得博主的文章还不错的话,请点赞👍收藏⭐️留言📝支持一下博主哦&#x1f91…...

window压缩包安装mongodb并注册系统服务

下载解压包 https://fastdl.mongodb.org/windows/mongodb-windows-x86_64-5.0.22.zip启动mongod 解压压缩包 至 d:\mongodb目录中,创建目录data、logs。并创建配置文件mongod.conf输入以下配置 dbpath d:\mongodb\data logpath d:\mongodb\logs\mongo.log loga…...

【Java每日一题】——第四十五题:综合案例:模拟物流快递系统。(2023.11.1)

🎃个人专栏: 🐬 算法设计与分析:算法设计与分析_IT闫的博客-CSDN博客 🐳Java基础:Java基础_IT闫的博客-CSDN博客 🐋c语言:c语言_IT闫的博客-CSDN博客 🐟MySQL&#xff1a…...

二十二、Arcpy批量波段组合——结合Landat数据城市建成区提取

一、前言 其实波段组合和GIS中栅格计算有点类似,实质上就是对每个像素点对应的DN值进行数学计算,也就是可以进行运算表达式是三个或多个变量相加、相减……每一个变量对应于一个图像数据,对这三个或多个图像数据求值并输出结果图像。 二、具体操作 1、实验具体目标 将202…...

电脑上数据恢复的详细操作

在日常使用电脑过程中,我们可能会遇到数据丢失的情况。无论是因为误删除、格式化、病毒攻击还是硬件故障,数据恢复都是我们迫切需要解决的问题。本文将介绍电脑数据恢复的详细操作步骤,帮助读者在面临数据丢失时能够迅速地恢复重要文件。 一…...

3.1 linux控制内核打印printk demsg DEBUG

本文主要内容: 1 列出内核打印级别 2 修改内核打印级别 方法1 编译时 方法2 uboot时 方法3 启动后 3 DEBUG宏控制妙用 4 内存中各种打印函数封装 5 测试示例代码 1 打印级别 #define KERN_EMERG "<0>" /* system is unusable */ #define KERN_ALERT …...

关于爬虫API常见的技术问题和解答

随着互联网的快速发展&#xff0c;数据获取变得越来越重要。爬虫API作为一种高效的数据获取手段&#xff0c;被广泛应用于各种场景。然而&#xff0c;在实际使用过程中&#xff0c;我们经常会遇到一些技术问题。本文将详细介绍爬虫API的常见技术问题及相应的解决方案。 一、爬…...

在CentOS上用yum方式安装MySQL8过程记录

此文参考官方文档一步一步记录安装到正常运行全过程 安装环境&#xff1a;centos7 mysql版本&#xff1a;8.0.35 安装过程主要参考下面两边文章&#xff1a; 1.官方文档 https://dev.mysql.com/doc/refman/8.0/en/linux-installation-yum-repo.html 2.linux yum安装mysql8 安…...

CEYEE希亦新品洗地机Pro系列发布, 领跑行业的「水汽混动」技术的旗舰新杰作

CEYEE希亦全新一代洗地机T800 PRO正式上市&#xff0c;采用双滚刷&#xff0c;双倍活水洗拖洗方式&#xff0c;达到拖一遍抵两遍&#xff0c;相对于10倍洁净效果&#xff01; 这款希亦Pro系列产品不仅刷新了洗地机行业技术水准&#xff0c;满足了用户愈发极致的清洁效能追求&a…...

为什么要安装防静电门禁闸机

安装防静电门禁闸机可以带来以下几个方面的好处&#xff1a; 防止静电干扰&#xff1a;静电是一种非常危险的物理现象&#xff0c;它可以对电子元器件、电路板和其他敏感设备造成损害&#xff0c;甚至导致设备故障和生产中断。防静电门禁闸机可以有效地防止静电的产生和传导&am…...

[linux] shell中的()和{}

参考&#xff1a;https://www.cnblogs.com/cheer-lingmu/p/16467561.html 参考&#xff1a;shell中各种括号的作用详解()、(())、[]、[[]]、{}(推荐)_linux shell_脚本之家 一、小括号() 1、命令替换&#xff1a;等同于cmd&#xff0c;shell扫描一遍命令行&#xff0c;发现了…...

jdk官网下载(详细步骤)

jdk全部版本下载网址 Java Archive | Oraclehttps://www.oracle.com/java/technologies/downloads/archive/ 下载之前先建立oracle账号(免费创建)&#xff0c;不用特意去搜&#xff0c;你点击下载jdk的时候会自动弹出来&#xff0c;自己建立一个账号就能下载了 找到自己要下载…...

10.24 校招 实习 内推 面经

绿*泡*泡&#xff1a; neituijunsir 交流裙 &#xff0c;内推/实习/校招汇总表格 1、校招 | 吉利控股集团2024届全球校园招聘路特斯科技专场&#xff08;内推&#xff09; 校招 | 吉利控股集团2024届全球校园招聘路特斯科技专场&#xff08;内推&#xff09; 2、数字IC验证…...

测试微信模版消息推送

进入“开发接口管理”--“公众平台测试账号”&#xff0c;无需申请公众账号、可在测试账号中体验并测试微信公众平台所有高级接口。 获取access_token: 自定义模版消息&#xff1a; 关注测试号&#xff1a;扫二维码关注测试号。 发送模版消息&#xff1a; import requests da…...

MySQL 隔离级别:脏读、幻读及不可重复读的原理与示例

一、MySQL 隔离级别 MySQL 提供了四种隔离级别,用于控制事务之间的并发访问以及数据的可见性,不同隔离级别对脏读、幻读、不可重复读这几种并发数据问题有着不同的处理方式,具体如下: 隔离级别脏读不可重复读幻读性能特点及锁机制读未提交(READ UNCOMMITTED)允许出现允许…...

以下是对华为 HarmonyOS NETX 5属性动画(ArkTS)文档的结构化整理,通过层级标题、表格和代码块提升可读性:

一、属性动画概述NETX 作用&#xff1a;实现组件通用属性的渐变过渡效果&#xff0c;提升用户体验。支持属性&#xff1a;width、height、backgroundColor、opacity、scale、rotate、translate等。注意事项&#xff1a; 布局类属性&#xff08;如宽高&#xff09;变化时&#…...

java调用dll出现unsatisfiedLinkError以及JNA和JNI的区别

UnsatisfiedLinkError 在对接硬件设备中&#xff0c;我们会遇到使用 java 调用 dll文件 的情况&#xff0c;此时大概率出现UnsatisfiedLinkError链接错误&#xff0c;原因可能有如下几种 类名错误包名错误方法名参数错误使用 JNI 协议调用&#xff0c;结果 dll 未实现 JNI 协…...

如何将联系人从 iPhone 转移到 Android

从 iPhone 换到 Android 手机时&#xff0c;你可能需要保留重要的数据&#xff0c;例如通讯录。好在&#xff0c;将通讯录从 iPhone 转移到 Android 手机非常简单&#xff0c;你可以从本文中学习 6 种可靠的方法&#xff0c;确保随时保持连接&#xff0c;不错过任何信息。 第 1…...

JDK 17 新特性

#JDK 17 新特性 /**************** 文本块 *****************/ python/scala中早就支持&#xff0c;不稀奇 String json “”" { “name”: “Java”, “version”: 17 } “”"; /**************** Switch 语句 -> 表达式 *****************/ 挺好的&#xff…...

多模态大语言模型arxiv论文略读(108)

CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文标题&#xff1a;CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文作者&#xff1a;Sayna Ebrahimi, Sercan O. Arik, Tejas Nama, Tomas Pfister ➡️ 研究机构: Google Cloud AI Re…...

网络编程(UDP编程)

思维导图 UDP基础编程&#xff08;单播&#xff09; 1.流程图 服务器&#xff1a;短信的接收方 创建套接字 (socket)-----------------------------------------》有手机指定网络信息-----------------------------------------------》有号码绑定套接字 (bind)--------------…...

如何理解 IP 数据报中的 TTL?

目录 前言理解 前言 面试灵魂一问&#xff1a;说说对 IP 数据报中 TTL 的理解&#xff1f;我们都知道&#xff0c;IP 数据报由首部和数据两部分组成&#xff0c;首部又分为两部分&#xff1a;固定部分和可变部分&#xff0c;共占 20 字节&#xff0c;而即将讨论的 TTL 就位于首…...

Razor编程中@Html的方法使用大全

文章目录 1. 基础HTML辅助方法1.1 Html.ActionLink()1.2 Html.RouteLink()1.3 Html.Display() / Html.DisplayFor()1.4 Html.Editor() / Html.EditorFor()1.5 Html.Label() / Html.LabelFor()1.6 Html.TextBox() / Html.TextBoxFor() 2. 表单相关辅助方法2.1 Html.BeginForm() …...