当前位置: 首页 > news >正文

RDD的内核调度【博学谷学习记录】

  1. RDD的依赖关系

RDD的依赖: 指的一个RDD的形成可能是有一个或者多个RDD得出, 此时这个RDD和之前的RDD之间产生依赖关系

在Spark中, RDD之间的依赖关系,主要有二种依赖关系:

1- 窄依赖:

目的: 为了实现并行计算操作, 并且提高容错的能力

指的: 一个RDD上的一个分区的数据, 只能完整的交付给下一个RDD的一个分区(完全继承),不能分隔

2- 宽依赖:

目的: 划分stage的依据

指的: 上一个RDD的某一个分区的数据被下游的一个RDD的多个分区的所接收, 中间必然存在shuffle操作(是否存在shuffle操作是判定宽窄依赖关系的重要依据)

注意: 一旦有了shuffle操作, 后续的RDD的执行必须等待前序的RDD(shuffle)执行完成,才能执行

在Spark中, 每一个算子是否会执行shuffle操作, 其实Spark在设计算子的时候, 就已经规划好了, 比如说: Map算子就不会触发shuffle, reduceByKey算子一定会触发shuffle操作

如果想知道这个算子是否会触发shuffle操作, 可以通过在运行的时候, 查看默认4040 WEB UI界面. 在界面中对应Job的DAG执行流程图中, 如果这个图被划为为了多个stage, 那么就说明这个算子会触发shuffle. 或者也可以查看这个算子源码. 一般在源码的说明信息中也会有一定的标记是否有shuffle

在实际使用中, 不需要纠结哪些算子会存在shuffle, 以需求实现为目标, 虽然shuffle的存在, 会影响一定的效率,但是以完成需求为准则, 该用那个算子, 就使用那个算子即可, 不要过分纠结

  1. DAG和STAGE

DAG: 有向无环图

主要描述一段执行任务, 从开始一直往下 执行, 不允许出现回调的操作

在Spark的应用程序中, 程序中有一个action算子, 就会触发一个Job任务,所以说一个Spark应用程序中可以有多个Job任务

对于每一个Job任务, 都会产生一个DAG执行流程图, 那么这个执行流程图是如何形成的呢?

第一步: 当Spark应用遇到一个action算子后, 就会触发一个Job任务执行, 首先会将这个action算子所依赖的所有的RDD全部都加载进行, 形成一个完整的stage阶段

第二步: 根据RDD之间的宽窄依赖关系, 从后往前进行回溯,如果遇到窄依赖, 就放置在一起, 形成一个stage, 如果遇到宽依赖, 就拆分为两个阶段,直到回溯完成, 形成最终的DAG执行流程图

3. RDD的shuffle

Sort Shuffle执行流程 与 MR有非常高的相似度:

每个线程(分区)处理后, 将数据写入到内存中, 当内存数据达到一定的阈值后, 触发溢写操作,在一些的时候, 需要对数据进行分区/排序, 将数据写入到磁盘上, 形成一个个文件, 当整个溢写完成后, 将多个小文件合并为一个大文件, 同时会为这个大文件提供一个索引文件, 方便下游读取对应分区的数据

Sort shuffle 存在两种运行的机制: 普通机制 和 byPass机制

普通机制:

每个线程(分区)处理后, 将数据写入到内存中, 当内存数据达到一定的阈值后, 触发溢写操作,在一些的时候, 需要对数据进行分区/排序, 将数据写入到磁盘上, 形成一个个文件, 当整个溢写完成后, 将多个小文件合并为一个大文件, 同时会为这个大文件提供一个索引文件, 方便下游读取对应分区的数据

bypass机制使用条件:

1- 上游的分区的数量不能超过200个(默认)

2- 上游不能进行提前聚合操作(提前聚合意味着要进行分组操作, 而分组的前提是要对数据进行排序, 将相关的数据放置在一起)

bypass机制: 在普通的机制基础上, 去除了排序操作

两种机制, bypass的运行效率在某些条件下, 可能要优于普通机制

4. Job的调度流程

1- 当Spark应用程序启动后, 此时首先会创建SparkContext对象, 此对象在创建的时候, 底层同时也会创建DAGScheduler 和 TaskScheduler:

DAGScheduler: 负责DAG流程图生成, Stage阶段划分, 每个阶段运行多少个线程

TaskScheduler: 负责每个阶段的Task线程的分配工作, 以及将对应线程任务提交到Executor上运行

2- 遇到Action算子后,就会产生一个Job任务, SparkContext对象将任务提交到DAGScheduler,DAGScheduler接收到任务后, 就会产生一个DAG执行流程图, 划分stage,并且确定每个stage中需要运行多少个线程,将每个阶段的线程放置到一个TaskSet集合中,提交给TaskScheduler

3- TaskScheduler接收到各个阶段的TaskSet后, 开始进行任务的分配工作,确认每个线程应该运行在那个executor上(尽可能保持均衡),然后将任务提交给对应executor上(底层由调度队列), 让executor启动线程执行任务即可,阶段是一个一个的运行, 无法并行执行的

4- Driver负责监听各个executor执行状态即可, 等待任务执行完成

相关文章:

RDD的内核调度【博学谷学习记录】

RDD的依赖关系RDD的依赖: 指的一个RDD的形成可能是有一个或者多个RDD得出, 此时这个RDD和之前的RDD之间产生依赖关系在Spark中, RDD之间的依赖关系,主要有二种依赖关系:1- 窄依赖:目的: 为了实现并行计算操作, 并且提高容错的能力指的: 一个RDD上的一个分区的数据, 只能完整的交…...

二叉树——二叉搜索树的最小绝对差

二叉搜索树的最小绝对差 链接 给你一个二叉搜索树的根节点 root ,返回 树中任意两不同节点值之间的最小差值 。 差值是一个正数,其数值等于两值之差的绝对值。 示例 1: 输入:root [4,2,6,1,3] 输出:1 示例 2&…...

git的使用(终端输入指令)下

文章目录前言1、git 分支创建分支查看分支切换分支合并分支删除分支2.提交到远程仓库远程提交链接一下自己仓库总结前言 上章链接 :git的使用(终端输入指令)上 我们接着上着来说 上章把 git 的 功能实现了一部分,本章我们接着上文…...

python使用influxdb-client管理InfluxDB的bucket

bucket的概念类似数据库的“库”,同时每个库中的数据都因为存在“时间戳”,每个数据都会有一个对应的时间点 influxdb-client-python官方github页面:https://github.com/influxdata/influxdb-client-python 管理bucket的官方示例&#xff1…...

【c++】模板2—类模板

文章目录类模板语法类模板与函数模板区别类模板中成员函数常见时机类模板对象做函数参数类模板与继承类模板成员函数类外实现类模板分文件编写类模板与友元类模板语法 类模板作用: 建立一个通用类,类中的成员数据类型可以不具体制定,用一个虚…...

基于SpringCloud的可靠消息最终一致性03:项目骨架代码(下)

上一节把整个项目的演示内容、项目结构、POM文件和配置文件都讲完了,接下来继续。 先安装并启动Nacos,然后在其中建立一个名为xiangwang-payment-dev.yaml的配置文件,内容为: # 指定运行环境 spring:autoconfigure:exclude: com.alibaba.druid.spring.boot.autoconfigure.D…...

linux如何彻底的删除文件

一、使用rm命令删除 直接用rm 先用ls -alt看下文件信息及拥有者等 可以看到拥有者是eve用户,所以在eve用户的终端中rm命令即可, 如果是root或者其他,则优先用root或其他账号进行删除 (base) eveEve:~$ ls -alt a.txt -rw-rw-r-- 1 eve eve …...

数据仓库Hive的安装和部署

1)去apache.hive.org官网下载hive 目前hive主要有三大版本,Hive1.x、Hive2.x、Hive3.x Hive1.x已经2年没有更新了,所以这个版本后续基本不会再维护了,不过这个版本已经迭代了很多年了,也是比较稳定的 Hive2.x最近一直…...

Python调用CANoe常见问题

一、Win32com已经安装成功但是在pycharm中提示错误 No module named win32com.clientPyCharm中出现unresolved reference的解决方法 一直提示需要升级pip版本Pywin32已成功安装,但仍提示没有win32com模块...

一起Talk Android吧(第五百零七回:图片滤镜ImageFilterView)

文章目录背景介绍功能介绍图片滤镜图片圆角图片缩放图片旋转图片平移各位看官们大家好,上一回中咱们说的例子是"如何调整组件在约束布局中的角度",这一回中咱们说的例子是" 图片滤镜ImageFilterView"。闲话休提,言归正转&#xff0c…...

Java 解释器和即时解释器(JIT)之间的区别

区别是: 翻译 .class (字节码文件) 的粒度和方式不同 解释器是一个逐条解释并执行字节码指令的组件,每次**只翻译一条**指令并执行,然后再翻译下一条指令。 它的翻译粒度是一条指令,而且是按需翻译&#x…...

Acwing 蓝桥杯 第二章 二分与前缀和

今天来补一下之前没写的总结,题是写完了,但是总结没写感觉没什么好总结的啊,就当打卡了789. 数的范围 - AcWing题库思路:一眼二分,典中典先排个序,再用lower_bound和upper_bound维护相同的数的左界和右界就…...

CSDN原力增长规则解读 实测一个月

CSDN原力越来越难了,当然,这对生态发展来说也是好事。介绍下原力增长有哪些渠道吧。发布原创文章:10分/次,每日上限为15分、2篇回答问题:1分/次,每日上限2分,2回答发动态:1分/次&…...

HDMI协议介绍(三)--InfoFrame

目录 Auxiliary Video information (AVI) InfoFrame AVI InfoFrame包结构 Header Body 举个例子 附录 Audio InfoFrame Audio InfoFrame包结构 Header Body Vendor Specific InfoFrame Vendor Specific InfoFrame包结构 Header Body AVI/AUDIO/VSI Infoframe都…...

【RocketMQ】源码详解:Broker端消息储存流程、消息格式

消息存储流程 入口: org.apache.rocketmq.remoting.netty.NettyRemotingAbstract#processRequestCommand org.apache.rocketmq.broker.processor.SendMessageProcessor#asyncProcessRequest 消息到达broker后会经过netty的解码、消息处理器等,最后根据…...

IoT项目系统架构案例2

项目背景 1.这个项目是对之前的案例的升级改造参考:IoT项目系统架构案例_iot案例_wxgnolux的博客-CSDN博客2.基于方案1的项目实施过程中碰到的问题,对硬件设备标准化的理念及新的功能需求(如根据天气预报温度调水温,APP界面可操作性优化等)•采用目前IoT主流厂商的架…...

Vue echarts封装

做大屏的时候经常会遇到 echarts 展示,下面展示在 Vue2.7 / Vue3 中对 echarts (^5.4.0) 的简单封装。 文章首发于https://blog.fxss.work/vue/echarts封装.html,样例查看 echarts 封装使用 props 说明 参数说明类型可选值默认…...

蓝桥杯入门即劝退(二十二)反转字符(不走寻常路)

欢迎关注点赞评论,共同学习,共同进步! ------持续更新蓝桥杯入门系列算法实例-------- 如果你也喜欢Java和算法,欢迎订阅专栏共同学习交流! 你的点赞、关注、评论、是我创作的动力! -------希望我的文章…...

数据仓库Hive

HIve介绍 Hive是建立在Hadoop上的数据仓库基础构架。它提供了一系列的工具,可以用来进行数据提取转化加载,可以简称为ETL。 Hive 定义了简单的类SQL查询语言,称为HQL,它允许熟悉SQL的用户直接查询Hadoop中的数据&#xf…...

嵌入式 STM32 步进电机驱动,干货满满,建议收藏

目录 步进电机 1、步进电机驱动原理 2、步进电机驱动 3、步进电机应用 1、第一步:初始化IO口 2、设置行进方式 四、源码 步进电机 步进电机被广泛应用于ATM机、喷绘机、刻字机、写真机、喷涂设备、医疗仪器及设备、计算机外设及海量存储设备、精密仪器、工业…...

利用最小二乘法找圆心和半径

#include <iostream> #include <vector> #include <cmath> #include <Eigen/Dense> // 需安装Eigen库用于矩阵运算 // 定义点结构 struct Point { double x, y; Point(double x_, double y_) : x(x_), y(y_) {} }; // 最小二乘法求圆心和半径 …...

深入剖析AI大模型:大模型时代的 Prompt 工程全解析

今天聊的内容&#xff0c;我认为是AI开发里面非常重要的内容。它在AI开发里无处不在&#xff0c;当你对 AI 助手说 "用李白的风格写一首关于人工智能的诗"&#xff0c;或者让翻译模型 "将这段合同翻译成商务日语" 时&#xff0c;输入的这句话就是 Prompt。…...

Cesium1.95中高性能加载1500个点

一、基本方式&#xff1a; 图标使用.png比.svg性能要好 <template><div id"cesiumContainer"></div><div class"toolbar"><button id"resetButton">重新生成点</button><span id"countDisplay&qu…...

五年级数学知识边界总结思考-下册

目录 一、背景二、过程1.观察物体小学五年级下册“观察物体”知识点详解&#xff1a;由来、作用与意义**一、知识点核心内容****二、知识点的由来&#xff1a;从生活实践到数学抽象****三、知识的作用&#xff1a;解决实际问题的工具****四、学习的意义&#xff1a;培养核心素养…...

对WWDC 2025 Keynote 内容的预测

借助我们以往对苹果公司发展路径的深入研究经验&#xff0c;以及大语言模型的分析能力&#xff0c;我们系统梳理了多年来苹果 WWDC 主题演讲的规律。在 WWDC 2025 即将揭幕之际&#xff0c;我们让 ChatGPT 对今年的 Keynote 内容进行了一个初步预测&#xff0c;聊作存档。等到明…...

涂鸦T5AI手搓语音、emoji、otto机器人从入门到实战

“&#x1f916;手搓TuyaAI语音指令 &#x1f60d;秒变表情包大师&#xff0c;让萌系Otto机器人&#x1f525;玩出智能新花样&#xff01;开整&#xff01;” &#x1f916; Otto机器人 → 直接点明主体 手搓TuyaAI语音 → 强调 自主编程/自定义 语音控制&#xff08;TuyaAI…...

MySQL 知识小结(一)

一、my.cnf配置详解 我们知道安装MySQL有两种方式来安装咱们的MySQL数据库&#xff0c;分别是二进制安装编译数据库或者使用三方yum来进行安装,第三方yum的安装相对于二进制压缩包的安装更快捷&#xff0c;但是文件存放起来数据比较冗余&#xff0c;用二进制能够更好管理咱们M…...

逻辑回归暴力训练预测金融欺诈

简述 「使用逻辑回归暴力预测金融欺诈&#xff0c;并不断增加特征维度持续测试」的做法&#xff0c;体现了一种逐步建模与迭代验证的实验思路&#xff0c;在金融欺诈检测中非常有价值&#xff0c;本文作为一篇回顾性记录了早年间公司给某行做反欺诈预测用到的技术和思路。百度…...

MacOS下Homebrew国内镜像加速指南(2025最新国内镜像加速)

macos brew国内镜像加速方法 brew install 加速formula.jws.json下载慢加速 &#x1f37a; 最新版brew安装慢到怀疑人生&#xff1f;别怕&#xff0c;教你轻松起飞&#xff01; 最近Homebrew更新至最新版&#xff0c;每次执行 brew 命令时都会自动从官方地址 https://formulae.…...

WPF八大法则:告别模态窗口卡顿

⚙️ 核心问题&#xff1a;阻塞式模态窗口的缺陷 原始代码中ShowDialog()会阻塞UI线程&#xff0c;导致后续逻辑无法执行&#xff1a; var result modalWindow.ShowDialog(); // 线程阻塞 ProcessResult(result); // 必须等待窗口关闭根本问题&#xff1a…...