当前位置: 首页 > news >正文

目标检测(Object Detection): 你需要知道的一些概念

文章目录

  • NMS 非极大值抑制
    • 目的
    • 步骤
  • mAP(Mean Average Precision)
    • 步骤
  • Feature Pyramid Network 特征金字塔结构
  • 一阶段检测器Single-Stage Detectors
    • "Anchor-based"的代表RetinaNet
    • Anchor-free 的代表FCOS

NMS 非极大值抑制

目的

去除网络输出的重叠框。 注意,在后处理阶段使用NMS(Non-Max Suppression)哦!

步骤

  1. 先将所有的框按照类别进行区分
  2. 把每个类比的检测框,按照置信度从高到低排序
  3. 取当前置信度最高的框框,与下一个置信度最高的框框进行iou计算,如果 I o U > t h r e s h o l d ( e . g 0.7 ) IoU > threshold(e.g 0.7) IoU>threshold(e.g0.7),就判定这个检测同一个物体的框离的太近了,我们就删掉这个置信度低的框框。**如果是太远的框框,IoU的值会很小。说明他们检测的不是同一个物体。
  4. 接下来,我们取下一个最高的框(这个框检测的就是同类别另一个物体了),重复step 3的动作。重复上述步骤直到所有的框都被比完。

蓝色的框框,与所有的框框进行IoU, 删除那个置信度低的橘色框框, 这里IoU的作用就是用来判断两个框的远近。蓝色的框框,与所有的框框进行IoU, 删除那个置信度低的橘色框框, 这里IoU的作用就是用来判断两个框的远近。
我们重复上述步骤,消灭橙色框框。我们重复上述步骤,消灭橙色框框

  • 在面对密集型检测任务的时候,NMS或许会消除掉好的框框。
    在这里插入图片描述

mAP(Mean Average Precision)

  • 用来衡量我们目标检测模型好坏的一种指标

步骤

  1. 模型跑一下所有测试的图片(with NMS)
  2. 对于每一个类别,计算平均精度AP = 精度(Precision)与召回(Recall) 的曲线的面积
      1. 对于该类别所有检测到的框框进行一个排序,按照置信度,从高到低。
        1. 如果该置信度的框框与 真实框框 I o U > 0.5 IoU > 0.5 IoU>0.5, 把这个框框记录为正样本(positive), 然后删掉掉真实框框。
        1. 否则,标记其为负样本(negative)
        1. 在精度与召回的曲线上画一个点

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

Feature Pyramid Network 特征金字塔结构

在这里插入图片描述

一阶段检测器Single-Stage Detectors

  • 目标检测分两种实现的方向:基于anchor的,不基于anchor的

"Anchor-based"的代表RetinaNet

在这里插入图片描述

请注意这里的Focal Loss
在这里插入图片描述

Anchor-free 的代表FCOS

  • 学习的是 类别, 中心点, 框框
    在这里插入图片描述

相关文章:

目标检测(Object Detection): 你需要知道的一些概念

文章目录 NMS 非极大值抑制目的步骤 mAP(Mean Average Precision)步骤 Feature Pyramid Network 特征金字塔结构一阶段检测器Single-Stage Detectors"Anchor-based"的代表RetinaNetAnchor-free 的代表FCOS NMS 非极大值抑制 目的 去除网络输…...

〔001〕虚幻 UE5 发送 get、post 请求、读取 json 文件

✨ 目录 🎈 安装 varest 扩展🎈 开启 varest 扩展🎈 发送 get 请求🎈 发送 post 请求🎈 读取 json 文件🎈 安装 varest 扩展 打开 虚幻商城,搜索 varest 关键字进行检索, varest 是一个 api 调用插件,支持 http/https 请求,也支持 json 文件的读取,最关键是该…...

一条 SQL 是如何在 MyBatis 中执行的

前言 MyBatis 执行 SQL 的核心接口为 SqlSession 接口,该接口提供了一些 CURD 及控制事务的方法,另外还可以通过 SqlSession 先获取 Mapper 接口的实例,然后通过 Mapper 接口执行 SQL,Mapper 接口方法的执行最终还是委托到 SqlSe…...

《低代码指南》——维格云机器人常见报错怎么解决?

在使用维格机器人调用维格表的API过程中,可能会出现机器人执行结果未达到预期的情况,此时可能是机器人运行出现了问题;通过点击这个机器人右上角的“运行历史”可以查看运行记录,通过对运行记录的分析,可以推断出问题所在,然后进行修改。 而对于运行历史的分析,主要是针…...

哈夫曼树c语言版

一、哈夫曼树概念 哈夫曼树又称最优树给定N个权值作为N个叶子结点,构造一棵二叉树,若该树的带权路径长度达到最小,称这样的二叉树为最优二叉树,也称为哈夫曼树(Huffman Tree)。哈夫曼树是带权路径长度最短的树,权值较大…...

食堂系统登录报错

因为数据库没有任何用户数据,所以会报错,需要添加admin用户 D:\env\jdk1.8.0_341\bin\java.exe -XX:TieredStopAtLevel1 -noverify -Dspring.output.ansi.enabledalways -Dcom.sun.management.jmxremote -Dspring.jmx.enabledtrue -Dspring.liveBeansVie…...

uniapp原生插件之乐橙摄像机播放插件(子账号云台对讲版)

插件介绍 乐橙摄像机播放插件(云台对讲版),集成视频播放,对讲模式、云台控制 插件地址 乐橙摄像机播放插件(子账号云台对讲版) - DCloud 插件市场 超级福利 uniapp 插件购买超级福利 插件申请权限 麦克风权限(可参考示例项目&#xff…...

Http代理与socks5代理有何区别?如何选择?(一)

了解SOCKS和HTTP代理之间的区别对于优化您的在线活动至关重要,无论您是技术娴熟的个人、现代互联网用户还是企业所有者。在使用代理IP时,您需要先了解这两种协议之间的不同。 一、了解HTTP代理 HTTP(超文本传输协议)代理专门设计…...

system verilog VSCode Windows 配置简述

system verilog VSCode Windows 配置简述 本文章的目的并非完全在 VSCode 中进行 system verilog 编程,而是以 vivado 为核心,将 VSCode 作为编译器。 配置步骤 安装 ctags choco install universal-ctags如果你没有安装 chocolatey,见 i…...

Linux中的Shell编程

Linux中的Shell编程 shell编程快速入门 为什么要学习Shell编程? 1.Linux运维工程师在进行服务器集群管理时,需要编写Shell程序来进行服务器管理。 2.对于JavaEE和Python程序员来说,工作的需要,你的老大会要求你编写一些Shell脚本…...

图像特征Vol.1:计算机视觉特征度量|第二弹:【统计区域度量】

目录 一、前言二、统计区域度量2.1:图像矩特征2.1.1:原始矩/几何矩2.1.2:中心距2.1.3:归一化的中心矩2.1.4:不变矩——Hu矩2.1.5:OpenCv实现矩特征及其应用 2.2:点度量特征2.3:全局直…...

将图像的锯齿状边缘变得平滑的方法

项目背景 使用PaddleSeg 192x192 模型分割出来的目标有锯齿状边缘,想通过传统算法将这种锯齿状边缘的变得平滑,虽然试了很过方法,但是效果还是不太理想 常用的集中方法 当使用分割算法(如分水岭分割、阈值分割等)分…...

【MySQL索引与优化篇】数据库设计实操(含ER模型)

数据库设计实操(含ER模型) 文章目录 数据库设计实操(含ER模型)1. ER模型1.1 概述1.2 建模分析1.3 ER 模型的细化1.4 ER 模型图转换成数据表1. 一个实体转换成一个数据库表2. 一个多对多的关系转换成一个数据表3. 通过外键来表达1对…...

OpenCV—自动驾驶实时道路车道检测(完整代码)

自动驾驶汽车是人工智能领域最具颠覆性的创新之一。在深度学习算法的推动下,它们不断推动我们的社会向前发展,并在移动领域创造新的机遇。自动驾驶汽车可以去传统汽车可以去的任何地方,并且可以完成经验丰富的人类驾驶员所做的一切。但正确地训练它是非常重要的。自动驾驶汽…...

PostGIS轨迹分析——简化轨迹

需求 对轨迹线进行简化,并将原始轨迹上的两个特征点拉取到简化后的轨迹上 简化线 红色线是简化后的轨迹线,蓝色线是原始轨迹,有两个特征点 知识点: st_makeline函数将点连成线st_simplify简化线函数,其中第二个参数为坐标系的单位,0.002度大概代表0.002x1.11x10^5≈22…...

量化交易-应对市场闪崩

金融交易世界虽然提供了无与伦比的机会,但也并非没有陷阱。其中一个陷阱是闪崩现象,尤其是在算法交易领域。这些快速且常常无法解释的市场下跌可能会在几分钟内消除数十亿美元的价值。了解它们的起源、影响和预防策略对于参与算法交易的任何人都至关重要。本文深入研究了闪存…...

在Vue3+ElementPlus项目中使用具有懒加载的el-tree树形控件

前言 有时遇到一些需求就是在使用树形控件时,服务端并没有一次性返回所有数据,而是返回首层节点列表。然后点击展开首层节点中的某个节点,再去请求该节点的子节点列表,那么就得用上懒加载的机制了。在此以ElementPlus的树形控件为…...

高浓度工业废水处理设备有哪些

高浓度工业废水处理设备主要有以下几种: 水解酸化池:将有机废水通过水解、酸化作用,使其成为更易于生化降解的有机物。厌氧池:通过厌氧反应降解有机废水,产生沼气等可再利用资源。好氧池:将经过水解酸化或…...

linux上传mysql数据库

如果你使用的是Linux操作系统,并且需要上传MySQL数据库,那么可以按照以下步骤进行操作: 1. 在终端登录到你的Linux服务器; 2. 运行以下命令,以安装MySQL客户端:sudo apt-get install mysql-client&#xf…...

easyexcel根据模板导出Excel文件,表格自动填充问题

背景 同事在做easyexcel导出Excel,根据模板导出的时候,发现导出的表格,总会覆盖落款的内容。 这就很尴尬了,表格居然不能自动填充,直接怒喷工具,哈哈。 然后一起看了一下这个问题。 分析原因 我找了自…...

【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型

摘要 拍照搜题系统采用“三层管道(多模态 OCR → 语义检索 → 答案渲染)、两级检索(倒排 BM25 向量 HNSW)并以大语言模型兜底”的整体框架: 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后,分别用…...

CMake 从 GitHub 下载第三方库并使用

有时我们希望直接使用 GitHub 上的开源库,而不想手动下载、编译和安装。 可以利用 CMake 提供的 FetchContent 模块来实现自动下载、构建和链接第三方库。 FetchContent 命令官方文档✅ 示例代码 我们将以 fmt 这个流行的格式化库为例,演示如何: 使用 FetchContent 从 GitH…...

自然语言处理——循环神经网络

自然语言处理——循环神经网络 循环神经网络应用到基于机器学习的自然语言处理任务序列到类别同步的序列到序列模式异步的序列到序列模式 参数学习和长程依赖问题基于门控的循环神经网络门控循环单元(GRU)长短期记忆神经网络(LSTM&#xff09…...

MySQL JOIN 表过多的优化思路

当 MySQL 查询涉及大量表 JOIN 时,性能会显著下降。以下是优化思路和简易实现方法: 一、核心优化思路 减少 JOIN 数量 数据冗余:添加必要的冗余字段(如订单表直接存储用户名)合并表:将频繁关联的小表合并成…...

LangFlow技术架构分析

🔧 LangFlow 的可视化技术栈 前端节点编辑器 底层框架:基于 (一个现代化的 React 节点绘图库) 功能: 拖拽式构建 LangGraph 状态机 实时连线定义节点依赖关系 可视化调试循环和分支逻辑 与 LangGraph 的深…...

AI语音助手的Python实现

引言 语音助手(如小爱同学、Siri)通过语音识别、自然语言处理(NLP)和语音合成技术,为用户提供直观、高效的交互体验。随着人工智能的普及,Python开发者可以利用开源库和AI模型,快速构建自定义语音助手。本文由浅入深,详细介绍如何使用Python开发AI语音助手,涵盖基础功…...

TCP/IP 网络编程 | 服务端 客户端的封装

设计模式 文章目录 设计模式一、socket.h 接口(interface)二、socket.cpp 实现(implementation)三、server.cpp 使用封装(main 函数)四、client.cpp 使用封装(main 函数)五、退出方法…...

CppCon 2015 学习:Reactive Stream Processing in Industrial IoT using DDS and Rx

“Reactive Stream Processing in Industrial IoT using DDS and Rx” 是指在工业物联网(IIoT)场景中,结合 DDS(Data Distribution Service) 和 Rx(Reactive Extensions) 技术,实现 …...

Spring是如何实现无代理对象的循环依赖

无代理对象的循环依赖 什么是循环依赖解决方案实现方式测试验证 引入代理对象的影响创建代理对象问题分析 源码见:mini-spring 什么是循环依赖 循环依赖是指在对象创建过程中,两个或多个对象相互依赖,导致创建过程陷入死循环。以下通过一个简…...

MCP和Function Calling

MCP MCP(Model Context Protocol,模型上下文协议) ,2024年11月底,由 Anthropic 推出的一种开放标准,旨在统一大模型与外部数据源和工具之间的通信协议。MCP 的主要目的在于解决当前 AI 模型因数据孤岛限制而…...