我在Vscode学OpenCV 初步接触
OpenCV是一个开源的计算机视觉库,可以处理图像和视频数据。它包含了超过2500个优化过的算法,用于对图像和视频进行处理,包括目标识别、面部识别、运动跟踪、立体视觉等。OpenCV支持多种编程语言,包括C++、Python、Java等,可以在Windows、Linux、Mac OS X、Android等多个平台上使用。
图像
图像和视频数是指数字图像和数字视频中包含的像素或帧数。在数字图像中,图像数指的是图像中包含的像素数量,通常用宽度和高度的乘积来表示。在数字视频中,视频数指的是视频中包含的帧数,即视频中连续的静止图像序列数量。图像和视频数是指数字图像和数字视频中包含的像素或帧数。在数字图像中,图像数指的是图像中包含的像素数量,通常用宽度和高度的乘积来表示。在数字视频中,视频数指的是视频中包含的帧数,即视频中连续的静止图像序列数量。
我在Vscode学OpenCV
- 图像
- 如果遇到了cv2无法有智能提示的功能
- 一、图像基本操作
- 1.1 读取图像
- 1.1.1 演示:
- 1.1.2 支持
- 1.1.3 flag
- 部分解释:
- 1.*.1_ 什么是alpha通道
- 1.*.2_ 灰度图后使用 print 语句打印读取的图像数据。
- 1.2 显示图像
- 1.2.1 imshow函数__在一个窗口内显示读取的图像。
- 1.2.2 namedWindow__创建指定名称的窗口
- 1.2.3 waitKey函数
- 1.2.3.1 要实现交互,可以使用cv2.waitKey函数来等待键盘输入
- 1.2.4 destroyWindow函数
- 1.2.5 destroyAllWindows
- 1.3 保存图像 cv2.imwrite()
pip install opencv-contrib-python 直接安装编译好的 OpenCV 贡献库
如果遇到了cv2无法有智能提示的功能
就把你下载cv2的路径下安装包cv2的pyd复制到你现在使用的Python解释器路径的文件下面
一、图像基本操作
导入所需要的库(使用 pip install 完整路径文件名完成安装)
import numpy as np
import cv2 as cv
import matplotlib.pyplot as plt
1.1 读取图像
img = cv2.imread(filename, flags=None)
- img是返回值,其值是读取到的图像。如果未读取到图像,则返回“None”。
- filename 表示要读取的图像的完整文件名。
- flags 是读取标记。该标记用来控制读取文件的类型

1.1.1 演示:
使用的照片:

# 图像IO操作
import numpy as np
import cv2 as cv
import matplotlib.pyplot as plt# 1.读取图像img = cv.imread("Pic/f2e919585490afd1bebd313257e7ad9.jpg")# 2、显示图像
## 2.1 OpenCV中的方法
cv.imshow("THIS Pi", img)
cv.waitKey(0)
# 按照窗口显示的
cv.destroyAllWindows()

1.1.2 支持


1.1.3 flag


cv2.IMREAD_UNCHANGED和cv2.IMREAD_GRAYSCALE是OpenCV库中用于读取图像的两种不同的模式。
-
cv2.IMREAD_UNCHANGED:这个模式会读取图像的原始数据,包括alpha通道(如果存在的话)。也就是说,如果图像是彩色的,那么它会保持彩色,如果图像有alpha通道,那么alpha通道也会被保留。
-
cv2.IMREAD_GRAYSCALE:这个模式会将图像转换为灰度图像。也就是说,无论原始图像是彩色的还是带有alpha通道的,读取后的图像都会是灰度的。加粗样式
- IMREAD_UNCHANGED = -1:返回原始图像,包括alpha通道(如果存在)在内的所有信息,即原始图像。- IMREAD_GRAYSCALE = 0:将图像转换为灰度图像。- IMREAD_COLOR = 1:返回BGR顺序的彩色图像,忽略alpha通道。- IMREAD_ANYDEPTH = 2:如果图像具有深度信息,保留这些信息(,则返回16位/32位图像),否则将图像转换为8位。- IMREAD_ANYCOLOR = 4:尝试以最可能的颜色格式读取图像。- IMREAD_LOAD_GDAL = 8:使用GDAL驱动来读取图像。- IMREAD_REDUCED_GRAYSCALE_2 = 16, IMREAD_REDUCED_GRAYSCALE_4 = 32, IMREAD_REDUCED_GRAYSCALE_8 = 64:将图像转换为单通道灰度图像,并减少图像的大小(分别减少1/2、1/4、1/8)。- IMREAD_REDUCED_COLOR_2 = 17, IMREAD_REDUCED_COLOR_4 = 33, IMREAD_REDUCED_COLOR_8 = 65:转换图像为3通道BGR彩色图像,并减少图像的大小(分别减少1/2、1/4、1/8)。- IMREAD_IGNORE_ORIENTATION = 128:忽略EXIF元数据中的定位信息,不旋转图像。这些标志可以根据你的需求进行组合使用,例如,你可以同时使用IMREAD_GRAYSCALE和IMREAD_REDUCED_GRAYSCALE_2,这样OpenCV会读取灰度图像,并将其大小减少一半。
部分解释:
1.*.1_ 什么是alpha通道
Alpha通道是图像中的一个通道,它表示图像的透明度信息。在一个RGBA颜色模型中,R代表红色,G代表绿色,B代表蓝色,A代表Alpha,即透明度。

Alpha通道的值通常在0到255之间,其中0表示完全透明,255表示完全不透明。通过改变Alpha通道的值,我们可以改变图像的透明度。例如,如果我们将一个像素的Alpha值设置为127,那么这个像素将会是半透明的。
Alpha通道在图像处理中有很多应用,例如在合成两个图像时,我们可以通过调整Alpha通道的值来控制每个图像的可见度。
常见的色彩深度有:
- 1位:二值图像,只有黑和白两种颜色。
- 8位:灰度图像,可以表示256种不同的灰度级别。
- 24位:真彩色图像,每个颜色通道(红、绿、蓝)使用8位,可以表示约1670万种颜色。
- 32位:包含alpha通道的真彩色图像,每个颜色通道(红、绿、蓝和alpha)使用8位。
所以,如果你问的是像素可以表示的颜色数量,那么:
- 1位色彩深度可以表示2种颜色。
- 8位色彩深度可以表示256种颜色。
- 24位色彩深度可以表示约1670万种颜色。
- 32位色彩深度理论上可以表示约429亿种颜色,但实际上由于alpha通道表示的是透明度而非颜色,所以可表示的颜色数量仍然是约1670万种。
彩色深度标准通常有以下几种:
- 8位色,每个像素所能显示的彩色数为2的8次方,即256种颜色。
- 16位增强色,16位彩色,每个像素所能显示的彩色数为2的16次方,即65536种颜色。
- 24位真彩色,每个像素所能显示的彩色数为24位,即2的24次方,约1680万种颜色。
- 32位真彩色,即在24位真彩色图像的基础上再增加一个表示图像透明度信息的Alpha通道。
1.*.2_ 灰度图后使用 print 语句打印读取的图像数据。
输出图像的部分像素值
256个灰度等级,255代表全白,0表示全黑。

灰度图的显示的print

原格式的print

1.2 显示图像
在读取图像前判断图像文件是否存在,并在显示图像前判断图像是否存在
1.2.1 imshow函数__在一个窗口内显示读取的图像。
img = cv2.imshow( winname, mat )
winname 是窗口名称、mat 是要显示的图像。
cv2.imshow("THIS Pi", img)
cv2.imshow("THIS Pi", img)
如果是两个同名的,只会显示一个窗口
cv2.namedWindow("lesson")
cv2.imshow("THIS Pi", img)
cv2.imshow("lesson", img) 引用一个并不存在的窗口,并在其中显示指定图像
可以用cv2.imshow()来创建一个新窗口并显示图像。如果指定的窗口名称已存在,则会在该窗口中显示图像。如果指定的窗口名称不存在,则会创建一个新的窗口并显示图像。实际上,cv2.imshow()函数会完成窗口的创建和图像的显示两个步骤。
1.2.2 namedWindow__创建指定名称的窗口
img = cv2.namedWindow( winname )
1.2.3 waitKey函数
cv2.waitKey( [delay] )
retval表示函数cv2.waitKey()的返回值。如果没有按键被按下,则返回-1;如果有按键被按下,则返回该按键的ASCII码。
delay表示等待键盘触发的时间,单位是毫秒。当该值设置为负数或零时,表示无限等待,即函数会一直等待键盘的触发。该值默认为0。
1.2.3.1 要实现交互,可以使用cv2.waitKey函数来等待键盘输入
import cv2# 读取图像
image = cv2.imread("image.jpg")while True:# 在窗口中显示图像cv2.imshow("Image", image)# 等待键盘输入,等待时间为0毫秒key = cv2.waitKey(0)# 如果按下键盘上的 "q" 键,退出循环if key == ord("q"):break# 关闭窗口
cv2.destroyAllWindows()
窗口会显示读取的图像,然后等待键盘输入。如果按下的是 “q” 键,程序将退出循环并关闭窗口。如果按下其他键,则会继续等待键盘输入。这样就实现了交互式地显示图像。
1.2.4 destroyWindow函数
cv2.destroyWindow( winname #winname 是窗口的名称。
1.2.5 destroyAllWindows
cv2.destroyAllWindows()#用来释放(销毁)所有窗口

1.3 保存图像 cv2.imwrite()
retval cv2.imwrite( filename, img[, params] )
retval 是返回值。如果保存成功,则返回 True;如果保存不成功,则返回 False。
filename 是要保存的目标文件的完整路径名,包含文件扩展名。
img 是被保存的图像。
params 是保存类型参数,是可选的
import cv2# 读取图像
image = cv2.imread("image.jpg")# 保存图像
retval = cv2.imwrite("saved_image.jpg", image)# 判断是否保存成功
if retval:print("图像保存成功")
else:print("图像保存失败")

保存灰度图
对比一下先:

plt.imshow(img,cmap=plt.cm.gray)

为了直观用Pycharm

相关文章:
我在Vscode学OpenCV 初步接触
OpenCV是一个开源的计算机视觉库,可以处理图像和视频数据。它包含了超过2500个优化过的算法,用于对图像和视频进行处理,包括目标识别、面部识别、运动跟踪、立体视觉等。OpenCV支持多种编程语言,包括C、Python、Java等,…...
[threejs]让导入的gltf模型显示边框
边框1效果图如下: 代码如下: const gltfLoader1 new GLTFLoader();gltfLoader1.load( "/assets/box/1/scene.gltf" ,function(gltf){let model gltf.scene;model.scale.set(3,3,3)// scene1.add(model);// renderer1.render(scene1, camera…...
YOLOv5优化:独家创新(SC_C_Detect)检测头结构创新,实现涨点 | 检测头新颖创新系列
💡💡💡本文独家改进:独家创新(SC_C_Detect)检测头结构创新,适合科研创新度十足,强烈推荐 SC_C_Detect | 亲测在多个数据集能够实现大幅涨点 目录 1. SC_C_Detect介绍 2. SC_C_Detect加入YOLOv5 2.1 新建models/head_improve.py...
作物模型--土壤数据制备过程
作物模型–土壤数据制备过程 首先打开FAO网站 下载下面这两个 Arcgis打开.bil文件 .mdb文件在access中转成.xls格式 Arcgis中对.bil文件定义投影...
学习笔记|单样本t检验|无统计学意义|规范表达|《小白爱上SPSS》课程:SPSS第四讲 | 单样本T检验怎么做?很单纯很简单!
目录 学习目的软件版本原始文档一、实战案例二、案例解析本案例之目的 四、SPSS操作1、正态性检验Tips:无统计学意义 2、t检验结果 五、结果解读六、规范报告1、规范表格2、规范文字 注意划重点 学习目的 SPSS第四讲 | 单样本T检验怎么做?很单纯很简单&…...
Bug管理规范
1BUG定义 1.1Bug状态 BUG状态标记BUG当前所处的状态,是用来处理BUG流程的主要参数,JIRA缺陷管理平台有以下一些状态: 新增(New):测试人员新发现的系统Bug; 打开(Open…...
剑指JUC原理-8.Java内存模型
👏作者简介:大家好,我是爱吃芝士的土豆倪,24届校招生Java选手,很高兴认识大家📕系列专栏:Spring源码、JUC源码🔥如果感觉博主的文章还不错的话,请👍三连支持&…...
Azure 机器学习 - 使用 AutoML 和 Python 训练物体检测模型
目录 一、Azure环境准备二、计算目标设置三、试验设置四、直观呈现输入数据五、上传数据并创建 MLTable六、配置物体检测试验适用于图像任务的自动超参数扫描 (AutoMode)适用于图像任务的手动超参数扫描作业限制 七、注册和部署模型获取最佳试用版注册模型配置联机终结点创建终…...
【深度学习】pytorch——快速入门
笔记为自我总结整理的学习笔记,若有错误欢迎指出哟~ pytorch快速入门 简介张量(Tensor)操作创建张量向量拷贝张量维度张量加法函数名后面带下划线 _ 的函数索引和切片Tensor和Numpy的数组之间的转换张量(tensor)与标量…...
git本地项目同时推送提交到github和gitee同步
git本地项目同时推送提交到github和gitee同步 同时推送到GitHub和Gitee(码云)可以通过设置多个远程仓库地址来实现。具体步骤如下: 一、分别推送 # 初始化仓库 git init# 添加远程仓库 git remote add gitee gitgitee.com:bealei/test.git…...
结构体数据类型使用的一些注意点
1.结构体定义时的注意事项: 1.错误定义结构体: struct students {char name[9] "Mike";int height 185; }; 这是不对的,在 C 语言中,这是由语言的设计原则所决定的。结构体的定义(struct declaration&…...
Serverless化云产品超40款 阿里云发布全球首款容器计算服务
10月31日,杭州云栖大会上,阿里云宣布推出全球首款容器计算服务ACS,大幅提升操作的易用性并节省20%资源成本,真正将Serverless理念大规模落地,同时阿里云 Serverless化进程进入快车道,有超40款云产品提供了S…...
最小化安装移动云大云操作系统--BCLinux-R8-U2-Server-x86_64-231017版
有个业务系统因为兼容性问题,需要安装el8.2的系统,因此对应安装国产环境下的BCLinuxR8U2系统来满足用户需求。BCLinux-R8-U2-Server是中国移动基于AnolisOS8.2深度定制的企业级X86服务器通用版操作系统。本文记录在DELL PowerEdge R720xd服务器上最小化安…...
索引创建的原则
索引的创建是数据库优化中非常重要的一部分,正确创建索引可以大大提高查询效率。以下是一些创建索引时需要考虑的原则: 根据查询频率创建索引: 频繁用于检索的列: 那些频繁用于查询的列或经常出现在 WHERE、JOIN、ORDER BY 和 GR…...
动态表单生成Demo(Vue+elment)
摘要:本文将介绍如何使用vue和elment ui组件库实现一个简单的动态表单生成的Demo。主要涉及两个.vue文件的书写,一个是动态表单生成的组件文件,一个是使用该动态表单生成的组件。 1.动态表单生成组件 这里仅集成了输入框、选择框、日期框三种…...
JMeter断言之JSON断言
JSON断言 若服务器返回的Response Body为JSON格式的数据,使用JSON断言来判断测试结果是较好的选择。 首先需要根据JSON Path从返回的JSON数据中提取需要判断的实际结果,再设置预期结果,两者进行比较得出断言结果。 下面首先介绍JSON与JSON…...
LuatOS-SOC接口文档(air780E)--mqtt - mqtt客户端
常量 常量 类型 解释 mqtt.STATE_DISCONNECT number mqtt 断开 mqtt.STATE_SCONNECT number mqtt socket连接中 mqtt.STATE_MQTT number mqtt socket已连接 mqtt连接中 mqtt.STATE_READY number mqtt mqtt已连接 mqttc:subscribe(topic, qos) 订阅主题 参数 …...
安装Python环境
Python 安装包下载地址:https://www.python.org/downloads/ 打开该链接,可以看到有两个版本的 Python,分别是 Python 3.x 和 Python 2.x,如下图所示: Python下载页面截图 图 1 Python 下载页面截图(包含…...
[nodejs] 爬虫加入并发限制并发实现痞客邦网页截图
今晚想给偶像的相册截个图,避免某一天网站挂了我想看看回忆都不行,用的是js的木偶师来爬虫台湾的部落格,效果图大概是这样,很不错 问题来了.我很贪心, 我想一次性把相册全爬了,也就是并发 ,这个人的相册有19个!!我一下子要开19个谷歌浏览器那个什么进程, 然后程序就崩了, 我就想…...
GEE——Publisher Data Catalogs发布者数据目录
发布者数据目录 发布者数据目录由数据集发布者策划,供更大范围的 Google 地球引擎社区使用,并作为地球引擎资产集公开共享。这些目录并非由 Google 编制。这里是GEE团队简政放权的一个过程,也就是说这些数据集的后续更新和维护并不由GEE团队负…...
C++初阶-list的底层
目录 1.std::list实现的所有代码 2.list的简单介绍 2.1实现list的类 2.2_list_iterator的实现 2.2.1_list_iterator实现的原因和好处 2.2.2_list_iterator实现 2.3_list_node的实现 2.3.1. 避免递归的模板依赖 2.3.2. 内存布局一致性 2.3.3. 类型安全的替代方案 2.3.…...
智慧工地云平台源码,基于微服务架构+Java+Spring Cloud +UniApp +MySql
智慧工地管理云平台系统,智慧工地全套源码,java版智慧工地源码,支持PC端、大屏端、移动端。 智慧工地聚焦建筑行业的市场需求,提供“平台网络终端”的整体解决方案,提供劳务管理、视频管理、智能监测、绿色施工、安全管…...
iPhone密码忘记了办?iPhoneUnlocker,iPhone解锁工具Aiseesoft iPhone Unlocker 高级注册版分享
平时用 iPhone 的时候,难免会碰到解锁的麻烦事。比如密码忘了、人脸识别 / 指纹识别突然不灵,或者买了二手 iPhone 却被原来的 iCloud 账号锁住,这时候就需要靠谱的解锁工具来帮忙了。Aiseesoft iPhone Unlocker 就是专门解决这些问题的软件&…...
江苏艾立泰跨国资源接力:废料变黄金的绿色供应链革命
在华东塑料包装行业面临限塑令深度调整的背景下,江苏艾立泰以一场跨国资源接力的创新实践,重新定义了绿色供应链的边界。 跨国回收网络:废料变黄金的全球棋局 艾立泰在欧洲、东南亚建立再生塑料回收点,将海外废弃包装箱通过标准…...
Nginx server_name 配置说明
Nginx 是一个高性能的反向代理和负载均衡服务器,其核心配置之一是 server 块中的 server_name 指令。server_name 决定了 Nginx 如何根据客户端请求的 Host 头匹配对应的虚拟主机(Virtual Host)。 1. 简介 Nginx 使用 server_name 指令来确定…...
python爬虫:Newspaper3k 的详细使用(好用的新闻网站文章抓取和解析的Python库)
更多内容请见: 爬虫和逆向教程-专栏介绍和目录 文章目录 一、Newspaper3k 概述1.1 Newspaper3k 介绍1.2 主要功能1.3 典型应用场景1.4 安装二、基本用法2.2 提取单篇文章的内容2.2 处理多篇文档三、高级选项3.1 自定义配置3.2 分析文章情感四、实战案例4.1 构建新闻摘要聚合器…...
高防服务器能够抵御哪些网络攻击呢?
高防服务器作为一种有着高度防御能力的服务器,可以帮助网站应对分布式拒绝服务攻击,有效识别和清理一些恶意的网络流量,为用户提供安全且稳定的网络环境,那么,高防服务器一般都可以抵御哪些网络攻击呢?下面…...
【论文阅读28】-CNN-BiLSTM-Attention-(2024)
本文把滑坡位移序列拆开、筛优质因子,再用 CNN-BiLSTM-Attention 来动态预测每个子序列,最后重构出总位移,预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵(S…...
分布式增量爬虫实现方案
之前我们在讨论的是分布式爬虫如何实现增量爬取。增量爬虫的目标是只爬取新产生或发生变化的页面,避免重复抓取,以节省资源和时间。 在分布式环境下,增量爬虫的实现需要考虑多个爬虫节点之间的协调和去重。 另一种思路:将增量判…...
LeetCode - 199. 二叉树的右视图
题目 199. 二叉树的右视图 - 力扣(LeetCode) 思路 右视图是指从树的右侧看,对于每一层,只能看到该层最右边的节点。实现思路是: 使用深度优先搜索(DFS)按照"根-右-左"的顺序遍历树记录每个节点的深度对于…...

