当前位置: 首页 > news >正文

从零开始实现神经网络(一)_NN神经网络

参考文章:神经网络介绍

一、神经元

        这一神经网络的基本单元,神经元接受输入,对它们进行一些数学运算,并产生一个输出。

这里有三步。

        首先,将每个输入(X1)乘以一个权重

        x_1 * w_1

        x_2 * w_2

        接下来,将所有加权输入与偏置相加:

        ( x_1 * w _1 ) + ( x_2 * w_2 ) + b

        最后,总和通过激活函数传递:

        y = f(w_1*x_1 + w_2 * x_2 + b)

激活函数

激活函数用于将无界输入转换为具有良好、可预测形式的输出。常用的激活函数是sigmoid功能:

你可以把它想象成,压缩零到负无穷的数字到[-1,0],压缩0到正无穷的数字到[0,1]

举个例子:

        这里写成向量形式,假设权重W = {w1,w2} = {0,1},输入X = {x1,x2} = {2,3},偏置b为1。

        那么有一下计算:

        (X\cdot W ) + b = ( x_1 * w _1 ) + ( x_2 * w_2 ) + b

                                = 0 * 2 +1*3 +4

                                =7

        y = f(w_1*x_1 + w_2 * x_2 + b) = f(7) = 0.9999

下面来实现下代码:

import numpy as npdef sigmoid(x):# Our activation function: f(x) = 1 / (1 + e^(-x))return 1 / (1 + np.exp(-x))class Neuron:def __init__(self, weights, bias):self.weights = weightsself.bias = biasdef feedforward(self, inputs):# Weight inputs, add bias, then use the activation functiontotal = np.dot(self.weights, inputs) + self.biasreturn sigmoid(total)weights = np.array([0, 1]) # w1 = 0, w2 = 1
bias = 4                   # b = 4
n = Neuron(weights, bias)x = np.array([2, 3])       # x1 = 2, x2 = 3
print(n.feedforward(x))    # 0.9990889488055994

二. 将神经元组合成神经网络

        神经网络只不过是一堆连接在一起的神经元。下面是一个简单的神经网络的样子:

该网络有 2 个输入(x1和x2),一个带有 2 个神经元的隐藏层 (ℎ1​和ℎ2​),以及具有 1 个神经元 (o1​).请注意,输入o1​是来自ℎ1​和h2​- 这就是使它成为一个网络的原因。

隐藏层是输入(第一层)和输出(最后一层)之间的任何。可以有多个隐藏层!

示例:前馈

让我们使用上图的网络,并假设所有神经元具有相同的权重w=[0,1],相同的偏差b=0,以及相同的 S 形激活函数。让h1​,h2​,o1​表示它们所代表的神经元的输出

如果我们传入输入会发生什么x=[2,3]?

用于输入的神经网络的输出x=[2,3]是0.7216很简单,对吧?

神经网络可以有任意数量的,这些层中可以有任意数量的神经元。基本思想保持不变:通过网络中的神经元向前馈送输入,以在最后获得输出。为简单起见,在本文的其余部分,我们将继续使用上图的网络。

神经网络的代码实现:

import numpy as np# ... code from previous section hereclass OurNeuralNetwork:'''A neural network with:- 2 inputs- a hidden layer with 2 neurons (h1, h2)- an output layer with 1 neuron (o1)Each neuron has the same weights and bias:- w = [0, 1]- b = 0'''def __init__(self):weights = np.array([0, 1])bias = 0# The Neuron class here is from the previous sectionself.h1 = Neuron(weights, bias)self.h2 = Neuron(weights, bias)self.o1 = Neuron(weights, bias)def feedforward(self, x):out_h1 = self.h1.feedforward(x)out_h2 = self.h2.feedforward(x)# The inputs for o1 are the outputs from h1 and h2out_o1 = self.o1.feedforward(np.array([out_h1, out_h2]))return out_o1network = OurNeuralNetwork()
x = np.array([2, 3])
print(network.feedforward(x)) # 0.7216325609518421

三. 训练神经网络,第 1 部分

假设我们有以下测量值:

名字重量(磅)高度(英寸)
爱丽丝13365F
鲍勃16072M
查理15270M
黛安娜12060F

让我们训练我们的网络,根据某人的体重和身高预测他们的性别:

我们将用0代表男性1代表女性,我们还将处理数据以使其更易于使用:

名字重量(减去 135)高度(减去 66)
爱丽丝-2-11
鲍勃2560
查理1740
黛安娜-15-61

我随意选择了减去的数值(135和66) 以使数值看起来更好。通常,会按平均值移动。

损失

在我们训练网络之前,我们首先需要一种方法来量化它做得有多“好”,以便它可以尝试做得“更好”。这就是损失所在。

        我们将使用均方误差 (MSE) 损失:

        MSE = \frac{1}{n}\sum^n_{i=1} (yTrue - yPred)^2

让我们分解一下:

  • n是样本数,即4(爱丽丝,鲍勃,查理,戴安娜)。
  • y表示要预测的变量,即性别。
  • yTrue​是变量的真实值(“正确答案”)。例如yTRue​因为爱丽丝的性别为1(女)。
  • yPred​是变量的预测值。这是我们的网络输出的任何内容。

(yTrue - yPred)^2称为平方误差。我们的损失函数只是取所有平方误差的平均值(因此得名方误差)。我们的预测越好,我们的损失就越低!

更好的预测=更低的损失。

训练网络=试图将其损失降至最低。

损失计算示例

假设我们的网络总是输出0换句话说,它相信所有人类都是男性🤔。我们的损失会是什么?

名字yTRueyPRED(yTrue - yPred)^2
爱丽丝101
鲍勃000
查理000
黛安娜101

        MSE=\frac{1}{4}(1+0+0+1) = 0.5

均方误差的代码实现:

import numpy as npdef mse_loss(y_true, y_pred):# y_true and y_pred are numpy arrays of the same length.return ((y_true - y_pred) ** 2).mean()y_true = np.array([1, 0, 0, 1])
y_pred = np.array([0, 0, 0, 0])print(mse_loss(y_true, y_pred)) # 0.5

四. 训练神经网络,第 2 部分

反向传播

我们现在有一个明确的目标:尽量减少神经网络的损失。我们知道我们可以改变网络的权重和偏差来影响其预测,但是我们如何以减少损失的方式做到这一点呢?

为简单起见,让我们假设我们的数据集中只有 爱丽丝:

名字重量(减去 135)高度(减去66)
爱丽丝-2-11

        那么只是爱丽丝的均方误差损失(最后会带入yTrue的值进去):

        MSE = \frac{1}{1}\sum^1_{i=1} (yTrue - yPred)^2

        =(yTrue - yPred)^2

        =(1 - yPred)^2

另一种考虑损失的方法是作为权重和偏差的函数。让我们标记网络中的每个权重和偏差:

 

然后,我们可以将损失写为多变量函数:

        L(w1​,w2​,w3​,w4​,w5​,w6​,b1​,b2​,b3​)

想象一下,我们想调整w1​.损失将如何L如果我们改变了,就改变w1​?

这是一个偏导数的问题 \frac{\partial L}{\partial w_1}可以回答。我们如何计算它?

首先,让我们根据以下方法(链式法则)重写偏导数:

        \frac{\partial L}{\partial w_1} =\frac{\partial L}{\partial yPred} * \frac{\partial yPred}{\partial w_1}

这里\frac{\partial L}{\partial yPred}我们可以求得,由于前面的MSE均方误差计算的就是神经网络的误差,MSE作为损失函数,所以有等式:

        L(w1,w2,w3,w4,w5,w6,b1,b2,b3) = (1 - yPred)^2

所以可以得出:

         \frac{\partial L}{\partial yPred} = \frac{\partial (1 - yPred)^2}{\partial yPred}

这里使用符合函数求导法则(对于f(g(x))函数的x进行求导,将得到= f(g(x))^{'}*g(x)^{'}):

        = 2*(1-yPred)*(1-yPred)^{'}

        =2*(1-yPred)*(-1)

        =-2*(1-yPred)

然后我们再搞清楚\frac{\partial yPred}{\partial w_1},由于yPred是预测值,而预测值由激活函数输出,所以能够得到等式:

        yPred = o_1 = f(w_5*h_1 + w_6 * h_2 + b_3)

由于改变w1只对h1有影响,所以可以写成: 

我们再对h1做同样的步骤(h1是上一层的激活函数),\frac{\partial h_1}{\partial w_1},同样是复合函数求导法则:

对于激活函数sigmoid的倒数:

最终整合起来:

这种通过逆向计算偏导数的系统称为反向传播。

推导当前神经网络反向传播所用到的所有偏导公式:

\frac{\partial L}{\partial w_1} = \frac{\partial L}{\partial yPred} * \frac{\partial yPred}{\partial h_1} * \frac{\partial h_1}{\partial w_1}

\frac{\partial L}{\partial w_2} = \frac{\partial L}{\partial yPred} * \frac{\partial yPred}{\partial h_1} * \frac{\partial h_1}{\partial w_2}

\frac{\partial L}{\partial w_3} = \frac{\partial L}{\partial yPred} * \frac{\partial yPred}{\partial h_2} * \frac{\partial h_2}{\partial w_3}

\frac{\partial L}{\partial w_4} = \frac{\partial L}{\partial yPred} * \frac{\partial yPred}{\partial h_2} * \frac{\partial h_2}{\partial w_4}

\frac{\partial L}{\partial w_5} = \frac{\partial L}{\partial yPred} * \frac{\partial yPred}{\partial w_5}

\frac{\partial L}{\partial w_6} = \frac{\partial L}{\partial yPred} * \frac{\partial yPred}{\partial w_6}

\frac{\partial L}{\partial b_1} = \frac{\partial L}{\partial yPred} * \frac{\partial yPred}{\partial h_1} * \frac{\partial h_1}{\partial b_1}

\frac{\partial L}{\partial b_2} = \frac{\partial L}{\partial yPred} * \frac{\partial yPred}{\partial h_2} * \frac{\partial h_2}{\partial b_2}

\frac{\partial L}{\partial b_3} = \frac{\partial L}{\partial yPred} * \frac{\partial yPred}{\partial b_3}

例子:

我们将继续假设数据集中只有 爱丽丝:

名字重量(减去 135)高度(减去 66)
爱丽丝-2-11

让我们将所有权重初始化为1以及所有偏置为0.如果我们通过网络进行前馈传递,我们会得到:

网络输出yPred​=0.524,这并不强烈支持男性 或女性 .让我们计算一下\frac{\partial L}{\partial w_1}

这里用到了上面所求得的sigmoid的倒数。

我们成功了!这告诉我们,由于\frac{\partial L}{\partial w_1}所求的偏导结果为0.0214,是个正数,函数单调递增,所以

如果我们要增加w1(权重)​,L(损失)结果会增大一点点。

训练:随机梯度下降

我们现在拥有训练神经网络所需的所有工具!我们将使用一种称为随机梯度下降 (SGD) 的优化算法,该算法告诉我们如何改变权重和偏差以最小化损失。

就是这个方程式:

η是一个称为学习率的常数,它控制着我们训练的速度。我们所做的只是用旧权重减去学习率*偏导值​:

  • 如果\frac{\partial L}{\partial w_1}的值为正数,w1​的减少,会使得L减少。
  • 如果\frac{\partial L}{\partial w_1}的值为负数,w1​的增加,会使得L减少。

如果我们对网络中的每个权重和偏差都这样做,损失将慢慢减少,我们的网络将得到改善。

我们的训练过程将如下所示:

  1. 从我们的数据集中选择一个样本。这就是它随机梯度下降的原因——我们一次只对一个样本进行操作。
  2. 计算所有损失相对于权重或偏差的偏导数(例如​\frac{\partial L}{\partial w_1}​,\frac{\partial L}{\partial w_2}​等)。
  3. 使用更新公式更新每个权重和偏差。
  4. 返回步骤 1。

让我们看看它的实际效果吧!

代码:一个完整的神经网络

终于到了实现一个完整的神经网络的时候了:

名字重量(减去 135)高度(减去 66)
爱丽丝-2-11
鲍勃2560
查理1740
黛安娜-15-61
import numpy as npdef sigmoid(x):# Sigmoid activation function: f(x) = 1 / (1 + e^(-x))return 1 / (1 + np.exp(-x))def deriv_sigmoid(x):# Derivative of sigmoid: f'(x) = f(x) * (1 - f(x))fx = sigmoid(x)return fx * (1 - fx)def mse_loss(y_true, y_pred):# y_true and y_pred are numpy arrays of the same length.return ((y_true - y_pred) ** 2).mean()class OurNeuralNetwork:'''A neural network with:- 2 inputs- a hidden layer with 2 neurons (h1, h2)- an output layer with 1 neuron (o1)*** DISCLAIMER ***:The code below is intended to be simple and educational, NOT optimal.Real neural net code looks nothing like this. DO NOT use this code.Instead, read/run it to understand how this specific network works.'''def __init__(self):# Weightsself.w1 = np.random.normal()self.w2 = np.random.normal()self.w3 = np.random.normal()self.w4 = np.random.normal()self.w5 = np.random.normal()self.w6 = np.random.normal()# Biasesself.b1 = np.random.normal()self.b2 = np.random.normal()self.b3 = np.random.normal()def feedforward(self, x):# x is a numpy array with 2 elements.h1 = sigmoid(self.w1 * x[0] + self.w2 * x[1] + self.b1)h2 = sigmoid(self.w3 * x[0] + self.w4 * x[1] + self.b2)o1 = sigmoid(self.w5 * h1 + self.w6 * h2 + self.b3)return o1def train(self, data, all_y_trues):'''- data is a (n x 2) numpy array, n = # of samples in the dataset.- all_y_trues is a numpy array with n elements.Elements in all_y_trues correspond to those in data.'''learn_rate = 0.1epochs = 1000 # number of times to loop through the entire datasetfor epoch in range(epochs):for x, y_true in zip(data, all_y_trues):# --- Do a feedforward (we'll need these values later)sum_h1 = self.w1 * x[0] + self.w2 * x[1] + self.b1h1 = sigmoid(sum_h1)sum_h2 = self.w3 * x[0] + self.w4 * x[1] + self.b2h2 = sigmoid(sum_h2)sum_o1 = self.w5 * h1 + self.w6 * h2 + self.b3o1 = sigmoid(sum_o1)y_pred = o1# --- Calculate partial derivatives.# --- Naming: d_L_d_w1 represents "partial L / partial w1"d_L_d_ypred = -2 * (y_true - y_pred)# Neuron o1d_ypred_d_w5 = h1 * deriv_sigmoid(sum_o1)d_ypred_d_w6 = h2 * deriv_sigmoid(sum_o1)d_ypred_d_b3 = deriv_sigmoid(sum_o1)d_ypred_d_h1 = self.w5 * deriv_sigmoid(sum_o1)d_ypred_d_h2 = self.w6 * deriv_sigmoid(sum_o1)# Neuron h1d_h1_d_w1 = x[0] * deriv_sigmoid(sum_h1)d_h1_d_w2 = x[1] * deriv_sigmoid(sum_h1)d_h1_d_b1 = deriv_sigmoid(sum_h1)# Neuron h2d_h2_d_w3 = x[0] * deriv_sigmoid(sum_h2)d_h2_d_w4 = x[1] * deriv_sigmoid(sum_h2)d_h2_d_b2 = deriv_sigmoid(sum_h2)# --- Update weights and biases# Neuron h1self.w1 -= learn_rate * d_L_d_ypred * d_ypred_d_h1 * d_h1_d_w1self.w2 -= learn_rate * d_L_d_ypred * d_ypred_d_h1 * d_h1_d_w2self.b1 -= learn_rate * d_L_d_ypred * d_ypred_d_h1 * d_h1_d_b1# Neuron h2self.w3 -= learn_rate * d_L_d_ypred * d_ypred_d_h2 * d_h2_d_w3self.w4 -= learn_rate * d_L_d_ypred * d_ypred_d_h2 * d_h2_d_w4self.b2 -= learn_rate * d_L_d_ypred * d_ypred_d_h2 * d_h2_d_b2# Neuron o1self.w5 -= learn_rate * d_L_d_ypred * d_ypred_d_w5self.w6 -= learn_rate * d_L_d_ypred * d_ypred_d_w6self.b3 -= learn_rate * d_L_d_ypred * d_ypred_d_b3# --- Calculate total loss at the end of each epochif epoch % 10 == 0:y_preds = np.apply_along_axis(self.feedforward, 1, data)loss = mse_loss(all_y_trues, y_preds)print("Epoch %d loss: %.3f" % (epoch, loss))# Define dataset
data = np.array([[-2, -1],  # Alice[25, 6],   # Bob[17, 4],   # Charlie[-15, -6], # Diana
])
all_y_trues = np.array([1, # Alice0, # Bob0, # Charlie1, # Diana
])# Train our neural network!
network = OurNeuralNetwork()
network.train(data, all_y_trues)

随着网络学习,我们的损失稳步减少:

我们现在可以使用网络来预测性别:

# Make some predictions
emily = np.array([-7, -3]) # 128 pounds, 63 inches
frank = np.array([20, 2])  # 155 pounds, 68 inches
print("Emily: %.3f" % network.feedforward(emily)) # 0.951 - F
print("Frank: %.3f" % network.feedforward(frank)) # 0.039 - M

相关文章:

从零开始实现神经网络(一)_NN神经网络

参考文章:神经网络介绍 一、神经元 这一神经网络的基本单元,神经元接受输入,对它们进行一些数学运算,并产生一个输出。 这里有三步。 首先,将每个输入(X1)乘以一个权重: 接下来&…...

C语言 每日一题 Day10

1.使用函数判断完全平方数 本题要求实现一个判断整数是否为完全平方数的简单函数。 函数接口定义: int IsSquare(int n); 其中n是用户传入的参数,在长整型范围内。如果n是完全平方数,则函数IsSquare必须返回1,否则返回0。 代码实…...

C++继承——矩形和长方体

Rectangle矩形类 /*矩形类*/ class Rectangle { private:double L 0;double W 0; public:Rectangle() default;Rectangle(double a, double b);double GetArea(); /*矩形面积*/double GetGirth(); /*矩形周长*/ }; /*构造函数*/ Rectangle::Rectangle(double a, double b) …...

代码随想录打卡第五十八天|● 583. 两个字符串的删除操作 ● 72. 编辑距离

583. 两个字符串的删除操作 题目: 给定两个单词 word1 和 word2 ,返回使得 word1 和 word2 相同所需的最小步数。 每步 可以删除任意一个字符串中的一个字符。 题目链接: 583. 两个字符串的删除操作 解题思路: dp数组的含义&am…...

面试流程之——程序员如何写项目经验

在简历中介绍IT项目经验,你可以遵循以下步骤: 明确项目目标:首先,清晰地阐述项目的目标。这可以是提升某个软件的性能,改进某个系统的用户界面,或者增加某款产品的功能。让读者了解你的工作与项目的整体目…...

框架安全-CVE 漏洞复现DjangoFlaskNode.jsJQuery框架漏洞复现

目录 服务攻防-框架安全&CVE复现&Django&Flask&Node.JS&JQuery漏洞复现中间件列表介绍常见语言开发框架Python开发框架安全-Django&Flask漏洞复现Django开发框架漏洞复现CVE-2019-14234(Django JSONField/HStoreField SQL注入漏洞&#xff…...

基于SSM的理发店管理系统

基于SSM的理发店管理系统的设计与实现~ 开发语言:Java数据库:MySQL技术:SpringSpringMVCMyBatis工具:IDEA/Ecilpse、Navicat、Maven 系统展示 主页 公告信息 管理员界面 用户界面 摘要 基于SSM(Spring、Spring MVC、…...

2.Spark的工作与架构原理

概述 目标: spark的工作原理spark数据处理通用流程rdd 什么是rddrdd 的特点 spark架构 spark架构相关进程spark架构原理 spark的工作原理 spark 的工作原理,如下图 图中中间部分是spark集群,也可以是基于 yarn 的,图上可以…...

qt-C++笔记之带有倒计数显示的按钮,计时期间按钮锁定

qt-C笔记之带有倒计数显示的按钮&#xff0c;计时期间按钮锁定 code review! 文章目录 qt-C笔记之带有倒计数显示的按钮&#xff0c;计时期间按钮锁定1.运行2.main.cc3.main.pro 1.运行 2.main.cc 代码 #include <QApplication> #include <QPushButton> #includ…...

HTML全局属性(global attribute)有哪些?

HTML全局属性是指在HTML元素上可用的基本属性&#xff0c;它们适用于所有HTML元素。以下是一些常见的HTML全局属性&#xff1a; 1&#xff1a;class&#xff1a;为元素指定一个或多个类名&#xff0c;用于与CSS样式表关联。 2&#xff1a;id&#xff1a;:为元素指定唯一的标识…...

MyBatis-Plus返回getOne返回null疑惑

getOne返回null 问题描述分析过程总结 问题描述 在数据库建了一张表主要包括两个字段master_id和slave_id;主要的额外字段max_lots 默认值是null&#xff1b; 当调用getOne进行查询结果是null&#xff0c;但实际情况是数据库时应该返回值的&#xff1b; AotfxMasterSlave ex…...

Physics2DPlugin3加载后会跳转gsap官网解决

因工作需要使用Physics2DPlugin3库&#xff0c;目标效果 加载他里面的在线js&#xff0c;使用效果正常&#xff0c;但是几秒会跳转官网&#xff0c;我们app内部、浏览器都会这样。 于是研究js代码&#xff0c;发现里面有setTimeout跳转。 删掉就好了 分享我改好的文件&#x…...

【AI视野·今日Sound 声学论文速览 第三十二期】Tue, 24 Oct 2023

AI视野今日CS.Sound 声学论文速览 Tue, 24 Oct 2023 Totally 20 papers &#x1f449;上期速览✈更多精彩请移步主页 Interesting: &#x1f4da;nvas3d, 基于任意录音和室内3D信息合成重建不同听角&#xff08;位置&#xff09;处的新的声音。(from apple cmu) website: htt…...

在Linux上编译gdal3.1.2指南

作者:朱金灿 来源:clever101的专栏 为什么大多数人学不会人工智能编程?>>> 以Ubuntu 18编译gdal3.1.2为例,编译gdal3.1.2需要先编译proj库和geos库(可选)。我选择的proj库版本为proj-7.1.0,编译proj-7.1.0需要先编译tiff库和sqlite3。我选择的sqlite3的版本为…...

73. 矩阵置零 --力扣 --JAVA

题目 给定一个 m x n 的矩阵&#xff0c;如果一个元素为 0 &#xff0c;则将其所在行和列的所有元素都设为 0 。请使用 原地 算法。 解题思路 通过二层循环找出元素为0所在的行和列&#xff1b;设置标志位记录当前行是否存在元素为0的&#xff0c;设置列表存储列为0的列&#…...

(笔记)Kotlin——Android封装ViewBinding之二 优化

0. 在app模块的build.gradle文件中添加如下配置开启ViewBinding android {.......viewBinding {enabled true}} 1. 新建一个Ext.kt文件 添加两个扩展函数&#xff0c;分别对应Activity和Fragment inline fun <T : ViewBinding> AppCompatActivity.viewBinding(cross…...

MATLAB算法实战应用案例精讲-【图像处理】机器视觉(基础篇)(八)

目录 前言 几个高频面试题目 机器视觉如何获取到好图像 常见的视觉光源 各种视觉打光方式...

由k8s升级慢引起的etcd性能不足的问题排查

一、基本介绍 最近etcd查看出现性能 curl --cacert /path/to/etcdctl-ca.crt --cert /path/to/etcdctl.crt --key /path/to/etcdctl.key https://:2379/metrics | grep etcd_disk_wal_fsync_duration_seconds_bucket 当集群规模突破过大时规模时,曾出现如下性能瓶颈问题: etc…...

如何构建用于Skydel GNSS模拟仿真的SNMP代理方式?

使用Skydel API构建测试方案 凭借其现代、强大且直观的API&#xff0c;德思特Safran GNSS模拟引擎Skydel免费提供了Python、C#、C和Labview的开源客户端库&#xff0c;它具有600多条命令&#xff0c;并且有完善的文档与记录。 随着Skydel软件更新添加新功能&#xff0c;API得…...

vue2+ant-design-vue a-form-model组件二次封装(form表单组件)FormModel 表单

一、效果图 二、参数配置 1、代码示例 <t-antd-form:ref-obj.sync"formOpts.ref":formOpts"formOpts":widthSize"1":labelCol"{ span:2}":wrapperCol"{ span:22}"handleEvent"handleEvent" />2. 配置参数…...

多云管理“拦路虎”:深入解析网络互联、身份同步与成本可视化的技术复杂度​

一、引言&#xff1a;多云环境的技术复杂性本质​​ 企业采用多云策略已从技术选型升维至生存刚需。当业务系统分散部署在多个云平台时&#xff0c;​​基础设施的技术债呈现指数级积累​​。网络连接、身份认证、成本管理这三大核心挑战相互嵌套&#xff1a;跨云网络构建数据…...

python爬虫:Newspaper3k 的详细使用(好用的新闻网站文章抓取和解析的Python库)

更多内容请见: 爬虫和逆向教程-专栏介绍和目录 文章目录 一、Newspaper3k 概述1.1 Newspaper3k 介绍1.2 主要功能1.3 典型应用场景1.4 安装二、基本用法2.2 提取单篇文章的内容2.2 处理多篇文档三、高级选项3.1 自定义配置3.2 分析文章情感四、实战案例4.1 构建新闻摘要聚合器…...

【服务器压力测试】本地PC电脑作为服务器运行时出现卡顿和资源紧张(Windows/Linux)

要让本地PC电脑作为服务器运行时出现卡顿和资源紧张的情况&#xff0c;可以通过以下几种方式模拟或触发&#xff1a; 1. 增加CPU负载 运行大量计算密集型任务&#xff0c;例如&#xff1a; 使用多线程循环执行复杂计算&#xff08;如数学运算、加密解密等&#xff09;。运行图…...

深入解析C++中的extern关键字:跨文件共享变量与函数的终极指南

&#x1f680; C extern 关键字深度解析&#xff1a;跨文件编程的终极指南 &#x1f4c5; 更新时间&#xff1a;2025年6月5日 &#x1f3f7;️ 标签&#xff1a;C | extern关键字 | 多文件编程 | 链接与声明 | 现代C 文章目录 前言&#x1f525;一、extern 是什么&#xff1f;&…...

基于Java+MySQL实现(GUI)客户管理系统

客户资料管理系统的设计与实现 第一章 需求分析 1.1 需求总体介绍 本项目为了方便维护客户信息为了方便维护客户信息&#xff0c;对客户进行统一管理&#xff0c;可以把所有客户信息录入系统&#xff0c;进行维护和统计功能。可通过文件的方式保存相关录入数据&#xff0c;对…...

【C++特殊工具与技术】优化内存分配(一):C++中的内存分配

目录 一、C 内存的基本概念​ 1.1 内存的物理与逻辑结构​ 1.2 C 程序的内存区域划分​ 二、栈内存分配​ 2.1 栈内存的特点​ 2.2 栈内存分配示例​ 三、堆内存分配​ 3.1 new和delete操作符​ 4.2 内存泄漏与悬空指针问题​ 4.3 new和delete的重载​ 四、智能指针…...

Git 3天2K星标:Datawhale 的 Happy-LLM 项目介绍(附教程)

引言 在人工智能飞速发展的今天&#xff0c;大语言模型&#xff08;Large Language Models, LLMs&#xff09;已成为技术领域的焦点。从智能写作到代码生成&#xff0c;LLM 的应用场景不断扩展&#xff0c;深刻改变了我们的工作和生活方式。然而&#xff0c;理解这些模型的内部…...

使用SSE解决获取状态不一致问题

使用SSE解决获取状态不一致问题 1. 问题描述2. SSE介绍2.1 SSE 的工作原理2.2 SSE 的事件格式规范2.3 SSE与其他技术对比2.4 SSE 的优缺点 3. 实战代码 1. 问题描述 目前做的一个功能是上传多个文件&#xff0c;这个上传文件是整体功能的一部分&#xff0c;文件在上传的过程中…...

PydanticAI快速入门示例

参考链接&#xff1a;https://ai.pydantic.dev/#why-use-pydanticai 示例代码 from pydantic_ai import Agent from pydantic_ai.models.openai import OpenAIModel from pydantic_ai.providers.openai import OpenAIProvider# 配置使用阿里云通义千问模型 model OpenAIMode…...

GAN模式奔溃的探讨论文综述(一)

简介 简介:今天带来一篇关于GAN的,对于模式奔溃的一个探讨的一个问题,帮助大家更好的解决训练中遇到的一个难题。 论文题目:An in-depth review and analysis of mode collapse in GAN 期刊:Machine Learning 链接:...