当前位置: 首页 > news >正文

Hadoop PseudoDistributed Mode 伪分布式

Hadoop PseudoDistributed Mode 伪分布式加粗样式

hadoop101hadoop102hadoop103
192.168.171.101192.168.171.102192.168.171.103
namenodesecondary namenoderecource manager
datanodedatanodedatanode
nodemanagernodemanagernodemanager
job history
job logjob logjob log

1. 升级内核和软件

yum -y update

2. 安装常用软件

yum -y install gcc gcc-c++ autoconf automake cmake make \zlib zlib-devel openssl openssl-devel pcre-devel \rsync openssh-server vim man zip unzip net-tools tcpdump lrzsz tar wget

3. 关闭防火墙

sed -i 's/SELINUX=enforcing/SELINUX=disabled/g' /etc/selinux/config
setenforce 0
systemctl stop firewalld
systemctl disable firewalld

4. 修改主机名和IP地址

hostnamectl set-hostname hadoop101
hostnamectl set-hostname hadoop102
hostnamectl set-hostname hadoop103
vim /etc/sysconfig/network-scripts/ifcfg-ens32

参考如下:

TYPE="Ethernet"
PROXY_METHOD="none"
BROWSER_ONLY="no"
BOOTPROTO="none"
DEFROUTE="yes"
IPV4_FAILURE_FATAL="no"
IPV6INIT="yes"
IPV6_AUTOCONF="yes"
IPV6_DEFROUTE="yes"
IPV6_FAILURE_FATAL="no"
IPV6_ADDR_GEN_MODE="stable-privacy"
NAME="ens32"
DEVICE="ens32"
ONBOOT="yes"
IPADDR="192.168.171.101"
PREFIX="24"
GATEWAY="192.168.171.2"
DNS1="192.168.171.2"
IPV6_PRIVACY="no"

5. 修改hosts配置文件

vim /etc/hosts

修改内容如下:

192.168.171.101	hadoop101
192.168.171.102	hadoop102
192.168.171.103	hadoop103

重启系统 注意:如果是虚拟机环境请关机 克隆

reboot

6. 下载安装JDK和Hadoop并配置环境变量

在所有主机节点创建软件目录

mkdir -p /opt/soft 

以下操作在 hadoop101 主机上完成

进入软件目录

cd /opt/soft

下载 JDK

wget https://download.oracle.com/otn/java/jdk/8u391-b13/b291ca3e0c8548b5a51d5a5f50063037/jdk-8u391-linux-x64.tar.gz?AuthParam=1698206552_11c0bb831efdf87adfd187b0e4ccf970

下载 hadoop

wget https://dlcdn.apache.org/hadoop/common/hadoop-3.3.5/hadoop-3.3.5.tar.gz

解压 JDK 修改名称

解压 hadoop 修改名称

tar -zxvf jdk-8u391-linux-x64.tar.gz -C /opt/soft/
mv jdk1.8.0_391/ jdk-8
tar -zxvf hadoop-3.3.5.tar.gz -C /opt/soft/
mv hadoop-3.3.5/ hadoop-3

配置环境变量

vim /etc/profile.d/my_env.sh

编写以下内容:

export JAVA_HOME=/opt/soft/jdk-8
export set JAVA_OPTS="--add-opens java.base/java.lang=ALL-UNNAMED"export HDFS_NAMENODE_USER=root
export HDFS_SECONDARYNAMENODE_USER=root
export HDFS_DATANODE_USER=root
export HDFS_ZKFC_USER=root
export HDFS_JOURNALNODE_USER=rootexport YARN_RESOURCEMANAGER_USER=root
export YARN_NODEMANAGER_USER=rootexport HADOOP_HOME=/opt/soft/hadoop-3
export HADOOP_INSTALL=$HADOOP_HOME
export HADOOP_MAPRED_HOME=$HADOOP_HOME
export HADOOP_COMMON_HOME=$HADOOP_HOME
export HADOOP_HDFS_HOME=$HADOOP_HOME
export YARN_HOME=$HADOOP_HOME
export HADOOP_CONF_DIR=$HADOOP_HOME/etc/hadoopexport PATH=$PATH:$JAVA_HOME/bin:$HADOOP_HOME/bin:$HADOOP_HOME/sbin

生成新的环境变量
注意:分发软件和配置文件后 在所有主机执行该步骤

source /etc/profile

7. 配置ssh免密钥登录

创建本地秘钥并将公共秘钥写入认证文件

ssh-keygen -t rsa -P '' -f ~/.ssh/id_rsa
ssh-copy-id root@hadoop101
ssh-copy-id root@hadoop102
ssh-copy-id root@hadoop103
ssh root@hadoop101
exit
ssh root@hadoop102
exit
ssh root@hadoop101
exit

8. 修改配置文件

cd  $HADOOP_HOME/etc/hadoop

hadoop-env.sh

core-site.xml

hdfs-site.xml

workers

mapred-site.xml

yarn-site.xml

hadoop-env.sh

hadoop-env.sh 文件末尾追加

export JAVA_HOME=/opt/soft/jdk-8
export set JAVA_OPTS="--add-opens java.base/java.lang=ALL-UNNAMED"export HDFS_NAMENODE_USER=root
export HDFS_SECONDARYNAMENODE_USER=root
export HDFS_DATANODE_USER=root
export HDFS_ZKFC_USER=root
export HDFS_JOURNALNODE_USER=rootexport YARN_RESOURCEMANAGER_USER=root
export YARN_NODEMANAGER_USER=root

core-site.xml

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration><property><name>fs.defaultFS</name><value>hdfs://hadoop101:8020</value></property><property><name>hadoop.tmp.dir</name><value>/home/hadoop_data</value></property><property><name>hadoop.http.staticuser.user</name><value>root</value></property><property><name>dfs.permissions.enabled</name><value>false</value></property><property><name>hadoop.proxyuser.root.hosts</name><value>*</value></property><property><name>hadoop.proxyuser.root.groups</name><value>*</value></property>
</configuration>

hdfs.site.xml

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration><!-- 指定副本数量 --><property><name>dfs.replication</name><value>3</value></property><!-- 指定 secondarynamenode 运行位置 --><property><name>dfs.namenode.secondary.http-address</name><value>hadoop102:50090</value></property>
</configuration>

workers

注意:

​ hadoop2.x中该文件名为slaves

​ hadoop3.x中该文件名为workers

hadoop101
hadoop102
hadoop103

mapred-site.xml

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration><property><name>mapreduce.framework.name</name><value>yarn</value></property><property><name>mapreduce.application.classpath</name><value>$HADOOP_MAPRED_HOME/share/hadoop/mapreduce/*:$HADOOP_MAPRED_HOME/share/hadoop/mapreduce/lib/*</value></property><!-- yarn历史服务端口 --><property><name>mapreduce.jobhistory.address</name><value>hadoop102:10020</value></property><!-- yarn历史服务web访问端口 --><property><name>mapreduce.jobhistory.webapp.address</name><value>hadoop102:19888</value></property>
</configuration>

yarn-site.xml

<?xml version="1.0"?>
<configuration><!-- 指定YARN的主角色(ResourceManager)的地址 --><property><name>yarn.resourcemanager.hostname</name><value>hadoop103</value></property><property><name>yarn.nodemanager.aux-services</name><value>mapreduce_shuffle</value></property><property><name>yarn.nodemanager.env-whitelist</name><value>JAVA_HOME,HADOOP_COMMON_HOME,HADOOP_HDFS_HOME,HADOOP_CONF_DIR,CLASSPATH_PREPEND_DISTCACHE,HADOOP_YARN_HOME,HADOOP_HOME,PATH,LANG,TZ,HADOOP_MAPRED_HOME</value></property><!-- 是否将对容器实施物理内存限制 --><property><name>yarn.nodemanager.pmem-check-enabled</name><value>false</value></property><!-- 是否将对容器实施虚拟内存限制。 --><property><name>yarn.nodemanager.vmem-check-enabled</name><value>false</value></property><!-- 开启日志聚集 --><property><name>yarn.log-aggregation-enable</name><value>true</value></property><!-- 设置yarn历史服务器地址 --><property><name>yarn.log.server.url</name><value>http://hadoop102:19888/jobhistory/logs</value></property><!-- 保存的时间7天 --><property><name>yarn.log-aggregation.retain-seconds</name><value>604800</value></property>
</configuration>

9. 分发软件和配置文件

分发 ssh 免密钥

scp -r ~/.ssh root@hadoop102:~/
rsync -av --progress  ~/.ssh root@hadoop103:~/

分发 hosts 文件

rsync -v --progress /etc/hosts root@hadoop102:/etc/
rsync -v --progress /etc/hosts root@hadoop103:/etc/

分发软件

rsync -av --progress /opt/soft/jdk-8 root@hadoop102:/opt/soft
rsync -av --progress /opt/soft/hadoop-3 root@hadoop102:/opt/soft
rsync -av --progress /opt/soft/jdk-8 root@hadoop103:/opt/soft
rsync -av --progress /opt/soft/hadoop-3 root@hadoop103:/opt/soft

分发环境变量

rsync -v --progress /etc/profile.d/my_env.sh root@hadoop102:/etc/profile.d/
rsync -v --progress /etc/profile.d/my_env.sh root@hadoop103:/etc/profile.d/

在所有主机节点 使新的环境变量生效

source /etc/profile

10. 初始化集群

hadoop101

# 格式化文件系统
hdfs namenode -format
# 启动 NameNode SecondaryNameNode DataNode 
start-dfs.sh
# 查看启动进程
jps
# hadoop101 看到 NameNode DataNode
# hadoop102 看到 SecondaryNameNode DataNode
# hadoop101 看到 DataNode

hadoop103

# 启动 ResourceManager daemon 和 NodeManager
start-yarn.sh
# 查看启动进程
jps
# hadoop101 看到 NameNode DataNode NodeManager
# hadoop102 看到 SecondaryNameNode DataNode NodeManager
# hadoop101 看到 DataNode ResourceManager NodeManager

hadoop102

# 启动 JobHistoryServer
mapred --daemon start historyserver
# 查看启动进程
jps
# hadoop101 看到 NameNode DataNode NodeManager
# hadoop102 看到 SecondaryNameNode DataNode NodeManager JobHistoryServer
# hadoop101 看到 DataNode ResourceManager NodeManager

重点提示:

# 关机之前 依关闭服务
# Hadoop102
mapred --daemon stop historyserver
# hadoop103
stop-yarn.sh
# hadoop101
stop-dfs.sh
# 开机后 依次开启服务
# hadoop101
start-dfs.sh
# hadoop103
start-yarn.sh
# hadoop102
mapred --daemon start historyserver

11. 修改windows下hosts文件

C:\Windows\System32\drivers\etc\hosts

追加以下内容:

192.168.171.101	hadoop101
192.168.171.102	hadoop102
192.168.171.103	hadoop103

Windows11 注意 修改权限

  1. 开始搜索 cmd

找到命令头提示符 以管理身份运行

以管理员身份运行命令提示符cmd

命令提示符cmd

  1. 进入 C:\Windows\System32\drivers\etc 目录

    cd drivers/etc
    

    C:\Windows\System32\drivers\etc

  2. 去掉 hosts文件只读属性

    attrib -r hosts
    

    在这里插入图片描述

  3. 打开 hosts 配置文件

    start hosts
    

    C:\Windows\System32\drivers\etc

  4. 追加以下内容后保存

    192.168.171.101	hadoop101
    192.168.171.102	hadoop102
    192.168.171.103	hadoop103
    

12. 测试

12.1 浏览器访问hadoop集群

浏览器访问: http://hadoop101:9870

namnode
datanodes

浏览器访问:http://hadoop102:50090/

secondarynamenode

浏览器访问:http://hadoop103:8088

resourcemanager

浏览器访问:http://hadoop102:19888/

JobHistoryServer

12.2 测试 hdfs

本地文件系统创建 测试文件 wcdata.txt

vim wcdata.txt
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive

在 HDFS 上创建目录 /wordcount/input

hdfs dfs -mkdir -p /wordcount/input

查看 HDFS 目录结构

hdfs dfs -ls /
hdfs dfs -ls /wordcount
hdfs dfs -ls /wordcount/input

上传本地测试文件 wcdata.txt 到 HDFS 上 /wordcount/input

hdfs dfs -put wcdata.txt /wordcount/input

检查文件是否上传成功

hdfs dfs -ls /wordcount/input
hdfs dfs -cat /wordcount/input/wcdata.txt

12.2 测试 mapreduce

计算 PI 的值

hadoop jar $HADOOP_HOME/share/hadoop/mapreduce/hadoop-mapreduce-examples-3.3.5.jar pi 10 10

单词统计

hadoop jar $HADOOP_HOME/share/hadoop/mapreduce/hadoop-mapreduce-examples-3.3.5.jar wordcount /wordcount/input/wcdata.txt /wordcount/result
hdfs dfs -ls /wordcount/result
hdfs dfs -cat /wordcount/result/part-r-00000

相关文章:

Hadoop PseudoDistributed Mode 伪分布式

Hadoop PseudoDistributed Mode 伪分布式加粗样式 hadoop101hadoop102hadoop103192.168.171.101192.168.171.102192.168.171.103namenodesecondary namenoderecource managerdatanodedatanodedatanodenodemanagernodemanagernodemanagerjob historyjob logjob logjob log 1. …...

个人职业规划

职业规划 软件体系结构 内容 组件 关系 视图 技术 抽象 封装 信息隐藏 模块化 事务分离 耦合和内聚 充分性、完整性和原始性 策略和实现的分离 接口和实现的分离 单一引用点 分而治之 结构 层 管道和过滤器 黑板 系统 分布式系统 代理者 交互式系统 …...

Linux | 如何保持 SSH 会话处于活动状态

在远程服务器管理和安全数据传输中&#xff0c;SSH&#xff08;Secure Shell&#xff09;是不可或缺的工具。然而&#xff0c;它的便利性和安全性有时会因常见的问题而受到损害&#xff1a;冻结 SSH 会话。 此外&#xff0c;session 的突然中断可能会导致工作丢失、项目延迟和无…...

树结构及其算法-二叉树节点的插入

目录 树结构及其算法-二叉树节点的插入 C代码 树结构及其算法-二叉树节点的插入 二叉树节点插入的情况和查找相似&#xff0c;重点是插入后仍要保持二叉查找树的特性。如果插入的节点已经在二叉树中&#xff0c;就没有插入的必要了&#xff0c;如果插入的值不在二叉树中&…...

JVM 分代垃圾回收过程

堆空间划分了代&#xff1a; 年轻代&#xff08;Young Generation&#xff09;分为 eden 和 Survivor 两个区&#xff0c;Survivor 又分为2个均等的区&#xff0c;S0 和 S1。 首先&#xff0c;新对象都分配到年轻代的 eden 空间&#xff0c;Survivor 刚开始是空的。 当 eden …...

【C++】 常对象与常函数

常函数&#xff1a; 成员函数后加const后我们称为这个函数为常函数常函数内不可以修改成员属性成员属性声明时加关键字mutable后&#xff0c;在常函数中依然可以修改 常对象&#xff1a; 声明对象前加const称该对象为常对象常对象只能调用常函数 一、this指针本质 this指针…...

Elasticsearch 集群分片出现 unassigned 其中一种原因详细还原

&#x1f3e1; 个人主页&#xff1a;IT贫道_大数据OLAP体系技术栈,Apache Doris,Clickhouse 技术-CSDN博客 &#x1f6a9; 私聊博主&#xff1a;加入大数据技术讨论群聊&#xff0c;获取更多大数据资料。 &#x1f514; 博主个人B栈地址&#xff1a;豹哥教你大数据的个人空间-豹…...

Java调用HTTPS接口,绕过SSL认证

1&#xff1a;说明 网络编程中&#xff0c;HTTPS&#xff08;Hypertext Transfer Protocol Secure&#xff09;是一种通过加密的方式在计算机网络上进行安全通信的协议。网络传输协议&#xff0c;跟http相比更安全&#xff0c;因为他加上了SSL/TLS协议来加密通信内容。 Java调…...

前端小技巧: TS实现数组转树,树转数组

将数组转为树 interface IArrayItem {id: number,name: string,parentId: number }interface ITreeNode {id: numbername: stringchildren?: ITreeNode[] }const arr [{id: 1, name: 部门A, parentId: 0},{id: 2, name: 部门B, parentId: 1},{id: 3, name: 部门C, parentId:…...

谷歌动态搜索广告被滥用引发恶意软件泛滥

研究人员发现了一种新方法&#xff0c;可以利用易受攻击的网站向搜索引擎用户发送恶意的、有针对性的广告&#xff0c;这种方法能够传播大量恶意软件&#xff0c;使受害者完全不知所措。 关键是“动态搜索广告”&#xff0c;谷歌利用网站登陆页面的内容将目标广告与搜索配对的…...

C语言实现 1.在一个二维数组中形成 n 阶矩阵,2.去掉靠边元素,生成新的 n-2 阶矩阵;3.求矩阵主对角线下元素之和:4.以方阵形式输出数组。

矩阵形式&#xff1a; 1 1 1 1 1 2 1 1 1 1 3 2 1 1 1 4 3 2 1 1 5 4 3 2 1 完整代码&#xff1a; /*编写以下函数 1&#xff0e;在一个二维数组中形成如以下形式的 n 阶矩阵&#xff1a; 1 1 1 1 1 2 1 1 1 1 3 2 1 1 1 4 3 2 1 1 5 4 3 2 1 2&#xff0e;去掉…...

我在Vscode学OpenCV 处理图像

既然我们是面向Python的OpenCV&#xff08;OpenCV for Python&#xff09;那我们就必须要熟悉Numpy这个库&#xff0c;尤其是其中的数组的库&#xff0c;Python是没有数组的&#xff0c;唯有借助他库才有所实现想要的目的。 # 老三样库--事先导入 import numpy as np import c…...

【python】路径管理+路径拼接问题

路径管理 问题相对路径问题绝对路径问题 解决os库pathlib库最终解决 问题 环境&#xff1a;python3.7.16 win10 相对路径问题 因为python的执行特殊性&#xff0c;使用相对路径时&#xff0c;在不同路径下用python指令会有不同的索引效果&#xff08;python的项目根目录根据执…...

C现代方法(第16章)笔记——结构、联合和枚举

文章目录 第16章 结构、联合和枚举16.1 结构变量16.1.1 结构变量的声明16.1.2 结构变量的初始化16.1.3 指示器(C99)16.1.4 对结构的操作 16.2 结构类型16.2.1 结构标记的声明16.2.2 结构类型的定义16.2.3 结构作为参数和返回值16.2.4 复合字面量(C99)16.2.5 匿名结构(C1X) 16.3…...

Python项目——识别指定物品

目录 1、百度EasyDL平台数据配置 1.1、训练图像上传 1.2、训练图像进行标注 1.3、训练模型 1.4、检验识别 1.5、申请发布 1.6、控制台权限配置 2、Python调用物体识别API 本项目是基于百度EasyDL平台制作的识别转盘内瓶子&#xff0c;且识别瓶子位置的一个项目。通过在…...

Spring-创建非懒加载的单例Bean源码

补充&#xff1a;关于扫描的逻辑 /*** Scan the class path for candidate components.* param basePackage the package to check for annotated classes* return a corresponding Set of autodetected bean definitions*/ public Set<BeanDefinition> findCandidateCo…...

Techlink TL24G06 网络变压器 10G 基座单端口变压器

功能特征&#xff1a; 1、符合IEEE 802.3标准。 2、符合RoHS。 3、工作温度范围&#xff1a;0C至70C。 4、储存温度范围&#xff1a;-20C至125C。...

Python操作PDF:PDF文件合并与PDF页面重排

处理大量的 PDF 文档是非常麻烦的事情&#xff0c;频繁地打开关闭文件会严重影响工作效率。对于一大堆内容相关的 PDF 文件&#xff0c;我们在处理时可以将这些 PDF 文件合并起来&#xff0c;作为单一文件处理&#xff0c;从而提高处理效率。同时&#xff0c;我们也可以选取不同…...

删除链表的倒数第n个节点(C++解法)

题目 给你一个链表&#xff0c;删除链表的倒数第 n 个结点&#xff0c;并且返回链表的头结点。 示例 1&#xff1a; 输入&#xff1a;head [1,2,3,4,5], n 2 输出&#xff1a;[1,2,3,5]示例 2&#xff1a; 输入&#xff1a;head [1], n 1 输出&#xff1a;[]示例 3&#…...

Apache服务的搭建与配置(超详细版)

前言 Apache是一种常见的Web服务器软件&#xff0c;广泛用于Linux和其他UNIX操作系统上。它是自由软件&#xff0c;可以通过开放源代码的方式进行自由分发和修改。Apache提供了处理静态和动态内容的能力&#xff0c;而且还支持多种编程语言和脚本&#xff0c;如PHP、Python和P…...

理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端

&#x1f31f; 什么是 MCP&#xff1f; 模型控制协议 (MCP) 是一种创新的协议&#xff0c;旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议&#xff0c;它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...

YSYX学习记录(八)

C语言&#xff0c;练习0&#xff1a; 先创建一个文件夹&#xff0c;我用的是物理机&#xff1a; 安装build-essential 练习1&#xff1a; 我注释掉了 #include <stdio.h> 出现下面错误 在你的文本编辑器中打开ex1文件&#xff0c;随机修改或删除一部分&#xff0c;之后…...

汽车生产虚拟实训中的技能提升与生产优化​

在制造业蓬勃发展的大背景下&#xff0c;虚拟教学实训宛如一颗璀璨的新星&#xff0c;正发挥着不可或缺且日益凸显的关键作用&#xff0c;源源不断地为企业的稳健前行与创新发展注入磅礴强大的动力。就以汽车制造企业这一极具代表性的行业主体为例&#xff0c;汽车生产线上各类…...

【磁盘】每天掌握一个Linux命令 - iostat

目录 【磁盘】每天掌握一个Linux命令 - iostat工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景 注意事项 【磁盘】每天掌握一个Linux命令 - iostat 工具概述 iostat&#xff08;I/O Statistics&#xff09;是Linux系统下用于监视系统输入输出设备和CPU使…...

BCS 2025|百度副总裁陈洋:智能体在安全领域的应用实践

6月5日&#xff0c;2025全球数字经济大会数字安全主论坛暨北京网络安全大会在国家会议中心隆重开幕。百度副总裁陈洋受邀出席&#xff0c;并作《智能体在安全领域的应用实践》主题演讲&#xff0c;分享了在智能体在安全领域的突破性实践。他指出&#xff0c;百度通过将安全能力…...

Spring AI 入门:Java 开发者的生成式 AI 实践之路

一、Spring AI 简介 在人工智能技术快速迭代的今天&#xff0c;Spring AI 作为 Spring 生态系统的新生力量&#xff0c;正在成为 Java 开发者拥抱生成式 AI 的最佳选择。该框架通过模块化设计实现了与主流 AI 服务&#xff08;如 OpenAI、Anthropic&#xff09;的无缝对接&…...

华为云Flexus+DeepSeek征文|DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建

华为云FlexusDeepSeek征文&#xff5c;DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建 前言 如今大模型其性能出色&#xff0c;华为云 ModelArts Studio_MaaS大模型即服务平台华为云内置了大模型&#xff0c;能助力我们轻松驾驭 DeepSeek-V3/R1&#xff0c;本文中将分享如何…...

自然语言处理——循环神经网络

自然语言处理——循环神经网络 循环神经网络应用到基于机器学习的自然语言处理任务序列到类别同步的序列到序列模式异步的序列到序列模式 参数学习和长程依赖问题基于门控的循环神经网络门控循环单元&#xff08;GRU&#xff09;长短期记忆神经网络&#xff08;LSTM&#xff09…...

【HarmonyOS 5 开发速记】如何获取用户信息(头像/昵称/手机号)

1.获取 authorizationCode&#xff1a; 2.利用 authorizationCode 获取 accessToken&#xff1a;文档中心 3.获取手机&#xff1a;文档中心 4.获取昵称头像&#xff1a;文档中心 首先创建 request 若要获取手机号&#xff0c;scope必填 phone&#xff0c;permissions 必填 …...

vulnyx Blogger writeup

信息收集 arp-scan nmap 获取userFlag 上web看看 一个默认的页面&#xff0c;gobuster扫一下目录 可以看到扫出的目录中得到了一个有价值的目录/wordpress&#xff0c;说明目标所使用的cms是wordpress&#xff0c;访问http://192.168.43.213/wordpress/然后查看源码能看到 这…...