P1284 三角形牧场
Portal.
首先,我们需要一些初中数学知识——秦九韶公式(又名海伦公式):
p = a + b + c 2 S = p ( p − a ) ( p − b ) ( p − c ) \begin{align} &p=\dfrac{a+b+c}{2}\\ &S=\sqrt{p(p-a)(p-b)(p-c)} \end{align} p=2a+b+cS=p(p−a)(p−b)(p−c)
假设 f ( k , i , j ) f(k,i,j) f(k,i,j) 表示前 k k k 个木板能否围成两边长为 i i i、 j j j 的三角形,状态转移时有三种情况:
- 把第 k k k 个木板加到边 i i i 中,前 k − 1 k-1 k−1 个木板要围成两边长为 i − l k i-l_k i−lk、 j j j 的三角形,即 f ( k − 1 , i − l k , j ) f(k-1,i-l_k,j) f(k−1,i−lk,j)。
- 把第 k k k 个木板加到边 j j j 中,同理 f ( k − 1 , i , j − l k ) f(k-1,i,j-l_k) f(k−1,i,j−lk)。
- 把第 k k k 个木板加到第三条边中, f ( k − 1 , i , j ) f(k-1,i,j) f(k−1,i,j)。
三者或运算之后的真假即结果。
可以观察到,转移过程中只跟前 k − 1 k-1 k−1 个木板的状态有关,所以我们可以采用背包的滚动数组思想,压掉 k − 1 k-1 k−1 这一层。
注意:
- 要用
double
。 - 要反着枚举 i i i、 j j j,这要参考 01 01 01 背包的思想,如果正着枚举会重复使用某一条边,并且压掉的 k − 1 k-1 k−1 这一层循环不能保存之前的状态会被替代。
- 初始化: f ( 0 , 0 ) = 1 f(0,0)=1 f(0,0)=1。
代码如下:
#include <bits/stdc++.h>
using namespace std;int l[45];
bool f[805][805];
double ans;double work(double a,double b,double c)
{double p=(a+b+c)/2;return sqrt(p*(p-a)*(p-b)*(p-c));
}bool check(int a,int b,int c)
{if(a+b>c&&a+c>b&&b+c>a) return 1;return 0;
}int main()
{int n,cc,i,j,k;cin>>n;for(i=1;i<=n;i++) cin>>l[i],cc+=l[i];f[0][0]=1;for(k=1;k<=n;k++)for(i=cc/2;i>=0;i--)for(j=cc/2;j>=0;j--){if(i-l[k]>=0&&f[i-l[k]][j]) f[i][j]=1;else if(j-l[k]>=0&&f[i][j-l[k]]) f[i][j]=1;}ans=-1;for(i=cc/2;i>0;i--)for(j=cc/2;j>0;j--){if(!f[i][j]) continue;if(!check(i,j,cc-i-j)) continue;ans=max(ans,work(i,j,cc-i-j));}if(ans!=-1) cout<<(long long)(ans*100);else cout<<-1;return 0;
}
相关文章:
P1284 三角形牧场
Portal. 首先,我们需要一些初中数学知识——秦九韶公式(又名海伦公式): p a b c 2 S p ( p − a ) ( p − b ) ( p − c ) \begin{align} &p\dfrac{abc}{2}\\ &S\sqrt{p(p-a)(p-b)(p-c)} \end{align} p2abcSp(p…...

【Linux】:Linux开发工具之Linux编辑器vim的使用
🔫1.Linux编辑器-vim使用 📤 vi/vim的区别简单点来说,它们都是多模式编辑器,不同的是vim是vi的升级版本,它不仅兼容vi的所有指令,而且还有一些新的特性在里面。例如语法加亮,可视化操作不仅可以…...

PFMEA详解结构分析——Sun FMEA软件
FMEA从1949年诞生到今天已经发生过多次更新,最新版本是2019年6月发布的《AIAG VDA FMEA手册》。新手册借鉴了AIAG的方框图、参数图、流程图等工具的运用,也借鉴了VDA的五步过程导向法,并在此基础上头尾各增加一步,形成了FMEA七步法…...
Qt扫盲-QFutureWatcher理论总结
QFutureWatcher理论总结 一、概述二、转态 一、概述 QFutureWatcher类允许我们使用信号槽的方式去监控QFuture。 QFutureWatcher提供关于QFuture的信息和通知。使用 setFuture() 函数开始监视特定的QFuture。 future()函数通过setFuture()返回 QFuture 集合。 为了方便起见…...

对比学习(contrastive Learning)
起源和定义 自监督学习又可以分为对比学习(contrastive learning)和生成学习(generative learning)两条主要的技术路线。 比学习的核心思想是将正样本和负样本在特征空间对比,从而学习样本的特征表示,使得样本与正样本的特征表示尽可能接近。正样本和负…...

译文:我们如何使 Elasticsearch 7.11 中的 date_histogram 聚合比以往更快
这篇文章是ES7.11版本的文章,主要学习的是思路,记录在这里留作以后参考用。 原文地址:https://www.elastic.co/cn/blog/how-we-made-date-histogram-aggregations-faster-than-ever-in-elasticsearch-7-11 正文开始: Elasticsea…...
python设计模式4:适配器模式
使用适配器模式使用两个或是多个不兼容的接口兼容。在不修改不兼容代码的情况下使用适配器模式实现接口一致性。通过Adapter 类实现。 例子: 一个俱乐部类Club,艺术加被请到俱乐部在表演节目: organize_performance()…...

kubectl资源管理命令---声明式
目录 一、yaml和json介绍 1、yuml语言介绍 2、k8s支持的文件格式 二、声明式对象管理 1、deployment.yaml文件详解 2、Pod yaml文件详解 3、Service yaml文件详解 三、编写资源配置清单 1、 编写yaml文件 2、 创建并查看pod资源 3、创建service服务对外提供访问并测试…...

IDEA使用-通过Database面板访问数据库
文章目录 前言操作过程注意事项1.无法下载驱动2.“Database”面板不显示数据库表总结前言 作为一款强大IDE工具,IDEA具有很多功能,本文将以MariaDB数据库访问为例,详细介绍如何通过IDE工具的Database面板来访问数据库。 操作过程 不同的版本操作会略有差异,这里我们用于演…...
单片机如何写好一个模块的驱动文件
搞单片机,MCU:STM32/GD32/HC32,通讯模组:4G/WIFI/BT/433,总线:USB/CAN/K/232/485,各种常见的传感器,都接触过。 一开始学习单片机的时候没有形成很好的编写习惯,如LED点亮/熄灭/闪烁…...

【C++笔记】C++多态
【C笔记】C多态 一、多态的概念及实现1.1、什么是多态1.2、实现多态的条件1.3、实现继承与接口继承1.4、多态中的析构函数1.5、抽象类 二、多态的实现原理 一、多态的概念及实现 1.1、什么是多态 多态的概念: 在编程语言和类型论中,多态(英…...

不想改代码!这样实现Reverse Sync测量时间同步精度
TSN的时间同步精度,指被测时钟与主时钟的最大偏差。在设备的组网过程中,最大的困难就是保证期望的时间同步精度。主时钟仅负责将自身的时间分发出去,难以判断其他设备的同步效果;此外,若在网络中某处发生了同步故障&am…...

【webrtc】 对视频质量的码率控制的测试与探索
目录 环境设置 transport-cc goog-remb (webrtc中的两种码率算法) 修改成remb算法 测试 效果 后续 可参考工程 环境设置 要到meshx上操作 telnet 112 然后执行factory_env show |grep meshx_ip 之后telnet meshx_ip 用户名admin 密码****.119 执行一下r…...

2003 - Can‘t connect to MysQL server on ‘39.108.169.0‘ (10060 “Unknown error“)
问题描述 某天和往常一样启动java项目,发现数据库出问题了,然后打开navicat,发现数据库的链接都连接不上, 一点击就会弹出报错框: 然后就各种上网搜索。 解决方案 上网查了一些解决方案,大部分都是说看…...
Python算法——选择排序
选择排序(Selection Sort)是一种简单的排序算法,它的基本思想是在未排序的部分中选择最小(或最大)的元素,然后将其放在已排序部分的末尾。选择排序不同于冒泡排序,它不需要反复交换元素…...

从「码农」到管理者,E人程序员的十年蜕变
点击文末“阅读原文”即可参与节目互动 剪辑、音频 / 卷圈 运营 / SandLiu 卷圈 监制 / 姝琦 封面 / 姝琦Midjourney 产品统筹 / bobo 场地支持 / 声湃轩北京录音间 当我们谈论程序员创业时,常常会首先想到一些传统观念认为的挑战:沟通技巧不佳、逻…...
ant Java任务的jvmargs属性和<jvmarg>内嵌元素
ant的Java任务可以在运行Apache Ant的Java虚拟机内、或者启用另外的Java虚拟机运行一个Java类。 可以使用java任务的jvmargs属性,设置传递给在新进程中的java虚拟机的参数。但当java任务的fork禁用的时候,jvmargs属性会被忽略。jvmargs这个属性已经被废…...

XML External Entity-XXE-XML实体注入
XML 实体? XML 实体允许定义标签,在解析 XML 文档时这些标签将被内容替换。一般来说,实体分为三种类型: 内部实体 外部实体 参数实体。 必须在文档类型定义(DTD)中创建实体 一旦 XML 文档被解析器处理,它将js用定义的常量“Jo Smith”替换定义的实体。正如您所看到…...
生态扩展Spark Doris Connector
生态扩展Spark Doris Connector doris官网去查找相匹配的spark spark的安装: tar -zxvf spark-3.1.2-bin-hadoop3.2.tgzmv spark-3.1.2-bin-hadoop3.2 /opt/sparkspark环境配置:vim /etc/profile export SPARK_HOME/opt/spark export PATH$PATH:$SPAR…...

构建 hive 时间维表
众所周知 hive 的时间处理异常繁琐且在一些涉及日期的统计场景中会写较长的 sql,例如:周累计、周环比等;本文将使用维表的形式降低时间处理的复杂度,提前计算好标准时间字符串未来可能需要转换的形式。 一、表设计 结合业务场景常…...
Vim 调用外部命令学习笔记
Vim 外部命令集成完全指南 文章目录 Vim 外部命令集成完全指南核心概念理解命令语法解析语法对比 常用外部命令详解文本排序与去重文本筛选与搜索高级 grep 搜索技巧文本替换与编辑字符处理高级文本处理编程语言处理其他实用命令 范围操作示例指定行范围处理复合命令示例 实用技…...

Linux 文件类型,目录与路径,文件与目录管理
文件类型 后面的字符表示文件类型标志 普通文件:-(纯文本文件,二进制文件,数据格式文件) 如文本文件、图片、程序文件等。 目录文件:d(directory) 用来存放其他文件或子目录。 设备…...

Appium+python自动化(十六)- ADB命令
简介 Android 调试桥(adb)是多种用途的工具,该工具可以帮助你你管理设备或模拟器 的状态。 adb ( Android Debug Bridge)是一个通用命令行工具,其允许您与模拟器实例或连接的 Android 设备进行通信。它可为各种设备操作提供便利,如安装和调试…...
Qwen3-Embedding-0.6B深度解析:多语言语义检索的轻量级利器
第一章 引言:语义表示的新时代挑战与Qwen3的破局之路 1.1 文本嵌入的核心价值与技术演进 在人工智能领域,文本嵌入技术如同连接自然语言与机器理解的“神经突触”——它将人类语言转化为计算机可计算的语义向量,支撑着搜索引擎、推荐系统、…...

Cloudflare 从 Nginx 到 Pingora:性能、效率与安全的全面升级
在互联网的快速发展中,高性能、高效率和高安全性的网络服务成为了各大互联网基础设施提供商的核心追求。Cloudflare 作为全球领先的互联网安全和基础设施公司,近期做出了一个重大技术决策:弃用长期使用的 Nginx,转而采用其内部开发…...

BCS 2025|百度副总裁陈洋:智能体在安全领域的应用实践
6月5日,2025全球数字经济大会数字安全主论坛暨北京网络安全大会在国家会议中心隆重开幕。百度副总裁陈洋受邀出席,并作《智能体在安全领域的应用实践》主题演讲,分享了在智能体在安全领域的突破性实践。他指出,百度通过将安全能力…...
工业自动化时代的精准装配革新:迁移科技3D视觉系统如何重塑机器人定位装配
AI3D视觉的工业赋能者 迁移科技成立于2017年,作为行业领先的3D工业相机及视觉系统供应商,累计完成数亿元融资。其核心技术覆盖硬件设计、算法优化及软件集成,通过稳定、易用、高回报的AI3D视觉系统,为汽车、新能源、金属制造等行…...
06 Deep learning神经网络编程基础 激活函数 --吴恩达
深度学习激活函数详解 一、核心作用 引入非线性:使神经网络可学习复杂模式控制输出范围:如Sigmoid将输出限制在(0,1)梯度传递:影响反向传播的稳定性二、常见类型及数学表达 Sigmoid σ ( x ) = 1 1 +...
大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计
随着大语言模型(LLM)参数规模的增长,推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长,而KV缓存的内存消耗可能高达数十GB(例如Llama2-7B处理100K token时需50GB内存&a…...
Webpack性能优化:构建速度与体积优化策略
一、构建速度优化 1、升级Webpack和Node.js 优化效果:Webpack 4比Webpack 3构建时间降低60%-98%。原因: V8引擎优化(for of替代forEach、Map/Set替代Object)。默认使用更快的md4哈希算法。AST直接从Loa…...