当前位置: 首页 > news >正文

Hadoop MapReduce

目录

      • 1.1 MapReduce介绍
      • 1.2 MapReduce优缺点
        • MapReduce实例进程
        • 阶段组成
      • 1.3 Hadoop MapReduce官方示例
        • 案例:评估圆周率π(PI)的值
        • 案例:wordcount单词词频统计
      • 1.4 Map阶段执行流程
      • 1.5 Reduce阶段执行流程
      • 1.6 Shuffle机制

1.1 MapReduce介绍

MapReduce的思想核心是“先分再合,分而治之”。
所谓“分而治之”就是把一个复杂的问题,按照一定的“分解”方法分为等价的规模较小的若干部分,然后逐个解决,分别找出各部分的结果,然后把各部分的结果组成整个问题的最终结果。

  • Map第一阶段,负责“拆分”:即把复杂的任务分解为若干个“简单的子任务”来并行处理。可以进行拆分的前提是这些小任务可以并行计算,彼此间几乎没有依赖关系
    拆分前提: 可并行计算+没有依赖关系
  • Reduce第二阶段,负责“合并”:即对map阶段的结果进行全局汇总。
    在这里插入图片描述
  • MapReduce借鉴了函数式语言中的思想,用Map和Reduce两个函数提供了高层的并行编程抽象模型。
    map: 对一组数据元素进行某种重复式的处理;
    reduce: 对Map的中间结果进行某种进一步的结果整理
  • MapReduce最大的亮点在于通过抽象模型和计算框架把需要做什么(业务问题)与具体怎么做(技术问题)分开了,为程序员提供一个抽象和高层的编程接口和框架。
    程序员仅需要关心其应用层的具体计算问题,仅需编写少量的处理应用本身计算问题的业务程序代码
  • Hadoop MapReduce是一个分布式计算框架。
    分布式计算是一种计算方法,和集中式计算是相对的

1.2 MapReduce优缺点

优点:

  • 易于编程:Mapreduce框架提供了用于二次开发的接口
  • 良好的扩展性:当计算机资源不能得到满足的时候,可以通过增加机器来扩展它的计算能力。
  • 高容错性:Hadoop集群是分布式搭建和部署得,任何单一机器节点宕机了,它可以把上面的计算任务转移到另一个节点上运行,不影响整个作业任务得完成
  • 适合海量数据的离线处理:可以处理GB、TB和PB级别得数据量

局限性:MR主要是在离线计算领域

  • 实时计算性能差。MapReduce主要应用于离线作业,无法作到秒级或者是亚秒级得数据响应
  • 不能进行流式计算:流式计算特点是数据是源源不断得计算,并且数据是动态的;而MapReduce作为一个离线计算框架,主要是针对静态数据集得,数据是不能动态变化得

MapReduce实例进程

一个完整的MapReduce程序在分布式运行时有三类

  1. MRAppMaster:负责整个MR程序的过程调度及状态协调
  2. MapTask:负责map阶段的整个数据处理流程
  3. ReduceTask:负责reduce阶段的整个数据处理流程

阶段组成

  • 一个MapReduce编程模型中只能包含一个Map阶段和一个Reduce阶段,或者只有Map阶段;
  • 不能有诸如多个map阶段、多个reduce阶段的情景出现;
  • 如果用户的业务逻辑非常复杂,那就只能多个MapReduce程序串行运行

在这里插入图片描述

  • 整个MapReduce程序中,数据都是以kv键值对的形式流转的

1.3 Hadoop MapReduce官方示例

  • 一个最终完整版本的MR程序需要用户编写的代码和Hadoop自己实现的代码整合在一起才可以
  • 由于MapReduce计算引擎天生的弊端(慢),当下企业中直接使用率已经很少了,所以在企业中工作很少涉及到MapReduce直接编程,但是某些软件的背后还依赖MapReduce引擎
  • 但是后续的新的计算引擎比如Spark,当中就有MapReduce深深的影子存在

案例:评估圆周率π(PI)的值

蒙特卡洛方法计算,在平面上随机撒点

node1上:

jps  #验证Hadoop是否启动
start-all.sh #启动Hadoop
cd /export/server/hadoop-3.3.0/  #进入Hadoop安装包
cd share/
ll
cd hadoop/
ll
cd mapreduce/
ll
#可以看到一个jar文件
hadoop jar hadoop-mapreduce-examples-3.3.0.jar pi 2 2
#调用hadoop-mapreduce-examples-3.3.0.jar文件
#后面三个参数:pi表示MapReduce程序执行圆周率计算任务
#指定map阶段运行的任务task次数,并发度,这里是2;、
#每个map任务取样的个数,这里是2。

打开yarn页面:http://node1:8080/

案例:wordcount单词词频统计

统计文件中,每个单词出现的总次数
WordCount算是大数据计算领域经典的入门案例,相当于Hello World。

在这里插入图片描述
流程:

  1. map阶段的核心:把输入的数据经过切割,全部标记1,因此输出就是<单词,1>。
    splite后进入map。因为MR数据类型都要求是keyvalue类型

  2. shuffle阶段核心:经过MR程序内部自带默认的排序分组等功能,把key相同的单词会作为一组数据构成新的kv对
    根据key把他们分组,放在一起

  3. reduce阶段核心:处理shuffle完的一组数据,该组数据就是该单词所有的键值对。对所有的1进行累加求和,就是单词的总次数

操作:

  1. 准备数据:
    1.txt中存放要统计的内容
    打开node1:9870进入Hadoop (要先在node1上start-all.sh启动)
    在Hadoop上创建目录input,然后上传1.txt
  2. 运行官方示例:
    官方实例位于Hadoop中mapReduce中
hadoop jar hadoop-mapreduce-examples-3.3.0.jar wordcount /input /outer
#依旧调用hadoop-mapreduce-examples-3.3.0.jar文件
#后面三个参数:wordcount表示执行单词统计任务;
#指定输入文件的路径
#指定输出结果的路径(该路径不能已存在);
  1. 查看结果
    打开hdfs,点进去ouput,有一个success是成功运行的标识文件,另一个文件显示输出结果
    在这里插入图片描述

1.4 Map阶段执行流程

Map阶段执行过程:

  1. 第一阶段:把输入目录下文件按照一定的标准逐个进行逻辑切片,形成切片规划。
    默认Split size = Block size(128M),每一个切片由一个MapTask处理。(getSplits)
    栗子:两个文件,文件a(300M)和文件b(200M),需要3+2个切片,5个MapTask处理
  2. 第二阶段:对切片中的数据按照一定的规则读取解析返回<key,value>对。
    默认是按行读取数据。key是每一行的起始位置偏移量,value是本行的文本内容。(TextInputFormat)
  3. 第三阶段:调用Mapper类中的map方法处理数据
  4. 第四阶段:按照一定的规则对Map输出的键值对进行分区partition。默认不分区,因为只有一个reducetask。分区的数量就是reducetask运行的数量。
  5. 第五阶段:Map输出数据写入内存缓冲区,达到比例溢出到磁盘上。溢出spill的时候根据key进行排序sort。默认根据key字典序排序。
    每次结果直接写入磁盘,io次数特别多,所以选择缓冲一下。类似水流打开冲击地面压力大,选择用一个杯子来缓冲,水杯接满一次倒地上一次,载接满再到地上
    缓冲区满了—即溢出spill
  6. 第六阶段:对所有溢出文件进行最终的merge合并,成为一个文件。最后合并成一个文件
    在这里插入图片描述
    input输入
    split切片,几个block数据块几个切片,
    memory buffer:缓冲区
    spill 溢写:同时sort排序
    merge合并成一个文件

1.5 Reduce阶段执行流程

  1. 第一阶段:ReduceTask会主动从MapTask复制拉取属于需要自己处理的数据。
    map运行完后就把数据放在自己运行的本地,是reduce主动出击
  2. 第二阶段:把拉取来数据,全部进行合并merge,即把分散的数据合并成一个大的数据。再对合并后的数据排序
    map阶段有多个maptask,数据从三个地方拉过来,所以需要合并
  3. 第三阶段是对排序后的键值对调用reduce方法。键相等的键值对调用一次reduce方法。最后把这些输出的键值对写入到HDFS文件中。

copy — 合并排序 — 分组处理reduce

1.6 Shuffle机制

  • Shuffle的本意是洗牌、混洗的意思,把一组有规则的数据尽量打乱成无规则的数据

  • 而在MapReduce中,Shuffle更像是洗牌的逆过程,指的是将map端的无规则输出按指定的规则“打乱”成具有一定规则的数据,以便reduce端接收处理
    shuffle让数据有序

  • 一般把从Map产生输出开始到Reduce取得数据作为输入之前的过程称作shuffle。处于下面红框中:
    在这里插入图片描述

shuffle机制:是核心,但导致慢,慢的原因:数据在内存、磁盘之间的多次往复

  1. Shuffle是MapReduce程序的核心与精髓,是MapReduce的灵魂
  2. Shuffle也是MapReduce被诟病最多的地方所在。MapReduce相比较于Spark、Flink计算引擎慢的原因,跟Shuffle机制有很大的关系。
  3. Shuffle中频繁涉及到数据在内存、磁盘之间的多次往复
    在这里插入图片描述

相关文章:

Hadoop MapReduce

目录1.1 MapReduce介绍1.2 MapReduce优缺点MapReduce实例进程阶段组成1.3 Hadoop MapReduce官方示例案例&#xff1a;评估圆周率π&#xff08;PI&#xff09;的值案例&#xff1a;wordcount单词词频统计1.4 Map阶段执行流程1.5 Reduce阶段执行流程1.6 Shuffle机制1.1 MapReduc…...

时间复杂度和空间复杂度详解

有一堆数据需要排序&#xff0c;A要使用快速排序&#xff0c;B要使用堆排序&#xff0c;A认为自己的代码更高效&#xff0c;B也认为自己的代码更高效&#xff0c;在这种情况下&#xff0c;怎么来判断谁的代码更好一点呢&#xff1f;这时候就有了时间复杂度和空间复杂度。 目录 …...

【C++】面向对象---封装

【C】面向对象—封装 1.封装的意义 封装是C面向对象三大特性之一 封装的意义&#xff1a; 将属性和行为作为一个整体&#xff0c;表现生活的事物将属性和行为加以权限控制 封装意义一&#xff1a; 在设计类的时候&#xff0c;属性和行为写在一起&#xff0c;表现事物 语…...

Docker简介

一、介绍容器虚拟化技术&#xff08;带环境安装的一种解决方案&#xff09;打破程序即应用的观念&#xff0c;透过镜像image将作业系统核心除外&#xff0c;运用应用程序所需要的运行环境&#xff0c;由上而下打包&#xff0c;达到应用程序跨平台间的无缝接轨运作。Docker是基于…...

量化学习(一)数据获取

试验环境 windows10 AnacondaPyCharm&#xff08;小白参考文章&#xff1a;https://coderx.com.cn/?p14&#xff09; VM中安装MySQL5.7&#xff08;设置utf8及相应配置优化&#xff09; 关于复权 小白参考文章&#xff1a;https://zhuanlan.zhihu.com/p/469820288 数据来源 AK…...

java并发编程讨论:锁的选择

java并发编程 线程堆栈大小 单线程的堆栈大小默认为1M&#xff0c;1000个线程内存就占了1G。所以&#xff0c;受制于内存上限&#xff0c;单纯依靠多线程难以支持大量任务并发。 上下文切换开销 ReentrantLock 2个线程交替自增一个共享变量&#xff0c;使用ReentrantLock&…...

大数据框架之Hadoop:MapReduce(三)MapReduce框架原理——ReduceTask工作机制

1、ReduceTask工作机制 ReduceTask工作机制&#xff0c;如下图所示。 &#xff08;1&#xff09;Copy阶段&#xff1a;ReduceTask从各个MapTask上远程拷贝一片数据&#xff0c;并针对某一片数据&#xff0c;如果其大小超过一定阈值&#xff0c;则写到磁盘上&#xff0c;否则直…...

Nginx的介绍、安装与常用命令

前言&#xff1a;传统结构上(如下图所示)我们只会部署一台服务器用来跑服务&#xff0c;在并发量小&#xff0c;用户访问少的情况下基本够用但随着用户访问的越来越多&#xff0c;并发量慢慢增多了&#xff0c;这时候一台服务器已经不能满足我们了&#xff0c;需要我们增加服务…...

less基础

一、less介绍 1、介绍 是css预处理语言&#xff0c;让css更强大&#xff0c;可以实现在less里面定义变量函数运算等 2、less默认浏览器不识别 less转成csS (框架: less/sass 框架的内置了转码less-css) 3、使用语法 1.创建less文件xxx.less 后缀.less 2. less编译成css 再引入…...

电子统计台账:海量数据中导入特定行,极力减少键盘编辑工作量

1 前言从事企业统计工作的小伙伴&#xff0c;本来已经够忙的了&#xff0c;现在又要加上什么电子台账这种鬼任务&#xff0c;而且居然还要每月来一次&#xff0c;简直不能忍。如果非要捏着鼻子忍了&#xff0c;那么有什么办法&#xff0c;减轻工作量&#xff1f;2 问题的提出有…...

ChatGPT是如何训练得到的?通俗讲解

首先声明喔&#xff0c;我是没有任何人工智能基础的小白&#xff0c;不会涉及算法和底层原理。 我依照我自己的简易理解&#xff0c;总结出了ChatGPT是怎么训练得到的&#xff0c;非计算机专业的同学也应该能看懂。看完后训练自己的min-ChatGPT应该没问题 希望大牛如果看到这…...

刷题28-有效的变位词

32-有效的变位词 解题思路&#xff1a; 注意变位词的条件&#xff0c;当两个字符串完全相等或者长度不等时&#xff0c;就不是变位词。 把字符串中的字符映射成整型数组&#xff0c;统计每个字符出现的次数 注意数组怎么初始化&#xff1a; int [] s1new int[26]代码如下&a…...

JavaWeb中异步交互的关键——Ajax

文章目录1,Ajax 概述1.1 作用1.2 同步和异步1.3 案例1.3.1 分析1.3.2 后端实现1.3.3 前端实现2&#xff0c;axios2.1 基本使用2.2 快速入门2.2.1 后端实现2.2.2 前端实现2.3 请求方法别名3&#xff0c;JSON3.1 概述3.2 JSON 基础语法3.2.1 定义格式3.2.2 代码演示3.2.3 发送异步…...

python爬虫常见错误

python爬虫常见错误前言python常见错误1. AttributeError: WebDriver object has no attribute find_element_by_id1. 问题描述2. 解决办法2. selenium&#xff1a;DeprecationWarning: executable_path has been deprecated, please pass in1. 问题描述2. 解决办法3. 下载了包…...

AI_Papers周刊:第三期

CV - 计算机视觉 | ML - 机器学习 | RL - 强化学习 | NLP 自然语言处理 2023.02.20—2023.02.26 文摘词云 Top Papers Subjects: cs.CL 1.LLaMA: Open and Efficient Foundation Language Models 标题&#xff1a;LLaMA&#xff1a;开放高效的基础语言模型 作者&#…...

在win7上用VS2008编译skysip工程

在win7上用VS2008编译skysip工程 1. 安装vs2008及相应的补丁包,主要包含以下安装包: 1.1 VS2008TeamSuite90DayTrialCHSX1429243.iso 1.2 VS2008SP1CHSX1512981.iso 1.3 VS90sp1-KB945140-CHS.exe 2. 安装Windows SDK: 6.0.6001.18000.367-KRMSDK_EN.zip 例如安装路径为…...

python 数据结构习题

旋转图像给定一个nn的二维矩阵表示一个图像。将图像顺时针旋转90度。你必须在原地旋转图像&#xff0c;这意味着你需要直接修改输入的二维矩阵。请不要使用另一个矩阵来旋转图像。例如&#xff0c;给定matrix[[1&#xff0c;2&#xff0c;3]&#xff0c;[4&#xff0c;5&#x…...

18、MySQL8其它新特性

文章目录1 MySQL8新特性概述1.1 MySQL8.0 新增特性1.2 MySQL8.0移除的旧特性2 新特性1&#xff1a;窗口函数2.1 使用窗口函数前后对比2.2 窗口函数分类2.3 语法结构2.4 分类讲解1 序号函数2 分布函数3 前后函数4 首尾函数5 其他函数2.5 小 结3 新特性2&#xff1a;公用表表达式…...

【Android笔记79】Android之接口请求库Retrofit的介绍及使用

这篇文章,主要介绍Android之接口请求库Retrofit的介绍及使用。 目录 一、Retrofit接口请求库 1.1、什么是Retrofit 1.2、Retrofit的使用 (1)引入依赖...

蓝桥杯 考勤打卡

问题描述 小蓝负责一个公司的考勤系统, 他每天都需要根据员工刷卡的情况来确定 每个员工是否到岗。 当员工刷卡时, 会在后台留下一条记录, 包括刷卡的时间和员工编号, 只 要在一天中员工刷过一次卡, 就认为他到岗了。 现在小蓝导出了一天中所有员工的刷卡记录, 请将所有到岗…...

XML Group端口详解

在XML数据映射过程中&#xff0c;经常需要对数据进行分组聚合操作。例如&#xff0c;当处理包含多个物料明细的XML文件时&#xff0c;可能需要将相同物料号的明细归为一组&#xff0c;或对相同物料号的数量进行求和计算。传统实现方式通常需要编写脚本代码&#xff0c;增加了开…...

CTF show Web 红包题第六弹

提示 1.不是SQL注入 2.需要找关键源码 思路 进入页面发现是一个登录框&#xff0c;很难让人不联想到SQL注入&#xff0c;但提示都说了不是SQL注入&#xff0c;所以就不往这方面想了 ​ 先查看一下网页源码&#xff0c;发现一段JavaScript代码&#xff0c;有一个关键类ctfs…...

SciencePlots——绘制论文中的图片

文章目录 安装一、风格二、1 资源 安装 # 安装最新版 pip install githttps://github.com/garrettj403/SciencePlots.git# 安装稳定版 pip install SciencePlots一、风格 简单好用的深度学习论文绘图专用工具包–Science Plot 二、 1 资源 论文绘图神器来了&#xff1a;一行…...

8k长序列建模,蛋白质语言模型Prot42仅利用目标蛋白序列即可生成高亲和力结合剂

蛋白质结合剂&#xff08;如抗体、抑制肽&#xff09;在疾病诊断、成像分析及靶向药物递送等关键场景中发挥着不可替代的作用。传统上&#xff0c;高特异性蛋白质结合剂的开发高度依赖噬菌体展示、定向进化等实验技术&#xff0c;但这类方法普遍面临资源消耗巨大、研发周期冗长…...

[ICLR 2022]How Much Can CLIP Benefit Vision-and-Language Tasks?

论文网址&#xff1a;pdf 英文是纯手打的&#xff01;论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误&#xff0c;若有发现欢迎评论指正&#xff01;文章偏向于笔记&#xff0c;谨慎食用 目录 1. 心得 2. 论文逐段精读 2.1. Abstract 2…...

Mac软件卸载指南,简单易懂!

刚和Adobe分手&#xff0c;它却总在Library里给你写"回忆录"&#xff1f;卸载的Final Cut Pro像电子幽灵般阴魂不散&#xff1f;总是会有残留文件&#xff0c;别慌&#xff01;这份Mac软件卸载指南&#xff0c;将用最硬核的方式教你"数字分手术"&#xff0…...

CRMEB 框架中 PHP 上传扩展开发:涵盖本地上传及阿里云 OSS、腾讯云 COS、七牛云

目前已有本地上传、阿里云OSS上传、腾讯云COS上传、七牛云上传扩展 扩展入口文件 文件目录 crmeb\services\upload\Upload.php namespace crmeb\services\upload;use crmeb\basic\BaseManager; use think\facade\Config;/*** Class Upload* package crmeb\services\upload* …...

纯 Java 项目(非 SpringBoot)集成 Mybatis-Plus 和 Mybatis-Plus-Join

纯 Java 项目&#xff08;非 SpringBoot&#xff09;集成 Mybatis-Plus 和 Mybatis-Plus-Join 1、依赖1.1、依赖版本1.2、pom.xml 2、代码2.1、SqlSession 构造器2.2、MybatisPlus代码生成器2.3、获取 config.yml 配置2.3.1、config.yml2.3.2、项目配置类 2.4、ftl 模板2.4.1、…...

[大语言模型]在个人电脑上部署ollama 并进行管理,最后配置AI程序开发助手.

ollama官网: 下载 https://ollama.com/ 安装 查看可以使用的模型 https://ollama.com/search 例如 https://ollama.com/library/deepseek-r1/tags # deepseek-r1:7bollama pull deepseek-r1:7b改token数量为409622 16384 ollama命令说明 ollama serve #&#xff1a…...

NPOI操作EXCEL文件 ——CAD C# 二次开发

缺点:dll.版本容易加载错误。CAD加载插件时&#xff0c;没有加载所有类库。插件运行过程中用到某个类库&#xff0c;会从CAD的安装目录找&#xff0c;找不到就报错了。 【方案2】让CAD在加载过程中把类库加载到内存 【方案3】是发现缺少了哪个库&#xff0c;就用插件程序加载进…...