当前位置: 首页 > news >正文

背包笔记

01背包

朴素版01背包

cin >> n >> m;
f[0][0] = 0;
for(int i = 1; i <= n; i ++)
{for(int j = 0; j <= m; j ++){f[i][j] = f[i - 1][j];//第i个物品不选if(j - v[i] >= 0){f[i][j] = max(f[i][j], f[i - 1][j - v[i]] + w[i]);//选第i个物品}}
}cout << f[n][m];

一维

cin >> n >> m;
for(int i = 1; i <= n; i ++)cin >> v[i] >> w[i];
//初始化
//一维的要f[0~m]都是0
//如果要恰好背包容量是m的话,要f[0] = 0, f[1~m] = 负无穷
for(int i = 1; i <= n; i ++)
{for(int j = m; j >= v[i]; j --){f[j] = max(f[j], f[j - v[i]] + w[i]);}
}cout << f[m];

相关文章:

背包笔记

01背包 朴素版01背包 cin >> n >> m; f[0][0] 0; for(int i 1; i < n; i ) {for(int j 0; j < m; j ){f[i][j] f[i - 1][j];//第i个物品不选if(j - v[i] > 0){f[i][j] max(f[i][j], f[i - 1][j - v[i]] w[i]);//选第i个物品}} }cout << f[n…...

【Redis 速通】Redis 在 Linux 上的单机服务快速搭建与部署(附完整流程步骤及命令代码)

Redis 单机版安装与部署 Written By: Xinyao Tian 概述 本文档主要描述了 Redis 的生产环境安装及配置方法。 主要步骤 编译及安装 进入 root 用户并上传 Redis 源码安装包 查看 Redis 源码安装包的上传情况: [rootcentos-host redis]# pwd /opt/redis [root centos-ho…...

前端JavaScript

文章目录 一、JavaScript概述JS简介1.ECMAScript和JavaScript的关系2.ECMAScript的历史3.什么是javas&#xff1f;4.JavaScript的作用&#xff1f; 三者之间的作用JS基础1.注释语法2.引入js的多种方式3.结束符号 变量与常量变量1.JavaScript声明2.var与let的区别常量 基本数据类…...

C语言程序设计(第五版)谭浩强 第三章课后题答案

第三章 1、假如我国国民生产总值的年增长率为7%&#xff0c; 计算10年后我国国民生产总值与现在相比增长多少百分比。计算公式为 ,其中r为年增长率&#xff0c;n为年数&#xff0c;p为与现在相比的倍数。 #include<stdio.h> #include<math.h>int main(){float r,…...

uni-app 解决钉钉小程序日期组件uni-datetime-picker不兼容ios问题

最近在使用uni-app开发 钉钉小程序 &#xff0c;遇到一个ios的兼容性问题 uni-datetime-picker 组件在模拟器上可以使用&#xff0c;在真机上不生效问题 文章目录 1. 不兼容的写法&#xff0c;uni-datetime-picker 不兼容IOS2. 兼容的写法&#xff0c;使用 dd.datePicker 实现。…...

【C++入门 三】学习C++缺省参数 | 函数重载 | 引用

C入门 三 1.缺省参数1.1 缺省参数概念1.2 缺省参数分类 2. 函数重载2.1 函数重载概念2.2 C支持函数重载的原理--名字修饰(name Mangling) 3.引用3.1引用概念3.2引用特性3.3 常引用3.4 使用场景1. 做参数2. 做返回值 3.5 传值、传引用效率比较3.6引用和指针的区别 4.引用和指针的…...

视频增强修复软件Topaz Video AI mac中文版支持功能

Topaz Video AI mac是一款使用人工智能技术对视频进行增强和修复的软件。它可以自动降噪、去除锐化、减少压缩失真、提高清晰度等等。Topaz Video AI可以处理各种类型的视频&#xff0c;包括低分辨率视频、老旧影片、手机录制的视频等等。 使用Topaz Video AI非常简单&#xff…...

C# 使用Thread类建线程

C# 使用Thread类建线程 目录 C# 使用Thread类建线程引言Thread类启动线程优先级后台运行线程状态线程名称线程ID最后 引言 线程(thread)是操作系统能够进行运算调度的最小单位。它被包含在进程之中,是进程中的实际运作单位。线程是我们程序常用的并行运行控制手段&#xff0c;…...

asyncio协程框架

asyncio 基本用法 asyncio 包含以下几个主要的组件&#xff1a;协程 asyncio 支持使用 async/await 语法定义协程&#xff08;coroutine&#xff09;。协程是可以暂停和恢复执行的函数&#xff0c;可以实现非阻塞式的异步编程。 import asyncioasync def coroutine():print(H…...

TSINGSEE智慧安防:AI人员入侵检测算法的工作原理及应用场景概述

人员入侵检测算法基于视频分析技术&#xff0c;自动对视频画面进行分析识别&#xff0c;可以对危险区的人员闯入、靠近等行为进行实时进行检测并预警&#xff0c;无需人工干预&#xff0c;协助管理者对场所的安全问题进行监管&#xff0c;可以广泛运用在学校、园区、工地、车站…...

Python:PDF转长图像和分页图像

简介&#xff1a;随着电子化文档的普及&#xff0c;PDF文件的使用频率越来越高。有时我们需要将PDF中的内容转化为图片格式进行分享或编辑&#xff0c;那么如何才能轻松地完成此任务呢&#xff1f;本文将为你展示一个Python工具&#xff1a;如何将PDF文件转化为图片&#xff0c…...

第48天:内置对象方法、 前端基础之BOM和DOM

内置对象方法 RegExp对象 // 定义正则表达式两种方式 var reg1 new RegExp("^[a-zA-Z][a-zA-Z0-9]{5,11}"); var reg2 /^[a-zA-Z][a-zA-Z0-9]{5,9}$/;// 正则校验数据 reg1.test(jason666) reg2.test(jason666)/*第一个注意事项&#xff0c;正则表达式中不能有空格…...

CMake系列EP02: 构建可执行程序和库

文章目录 cmake --buildmessage命令切换生成器使用ninja构建项目切换生成器的工作原理 构建和链接静态库和动态库add_library命令add_executable命令构建OBJECT类型的库条件编译opion命令option更多信息 指定编译器构建类型切换构建类型&#xff1a; 设置编译器选项cmake调试设…...

比亚迪今年的薪资。。

大家或许已经对比亚迪在西安的宣讲会有所耳闻&#xff0c;那场面真的是座无虚席。如果你稍微迟到了一些&#xff0c;那么你可能只能在门外或是走廊听了。 事实上&#xff0c;许多人早早地抵达了&#xff0c;只要稍微晚到&#xff0c;就可能错过了室内的位置。 更令人震惊的是&…...

【OpenCV实现图像找到轮廓的不同特征,就像面积,周长,质心,边界框等等。】

文章目录 概要图像矩凸包边界矩形 概要 OpenCV是一个流行的计算机视觉库&#xff0c;它提供了许多图像处理和分析功能&#xff0c;其中包括查找图像中物体的轮廓。通过查找轮廓&#xff0c;可以提取许多有用的特征&#xff0c;如面积、周长、质心、边界框等。 以下是几种使用…...

数仓建模—数仓建设概论

数仓建设概论 文章目录 数仓建设概论什么是数据仓库数据仓库对企业的意义1.全面掌握企业数据2.支持企业的决策制定3. 可靠性高怎么做数据仓库建1. 需求分析2. 设计数据仓库架构3. 数据采集4. 数据清洗5. 数据结构设计6. 数据分析7. 数据可视化8. 数据维护总结前面我们介绍了关于…...

Docker dnmp 多版本php安装 php8.2

Laravel9 开发需要用到php8.1以上的版本&#xff0c;而dnmp只支持到php8.0。安装php8.2的步骤如下&#xff1a; 1. 从/services/php80目录复制一份出来&#xff0c;重命名为php82&#xff0c;extensions目录只保留 install.sh 和 install-php-extensions 这两个文件 2. 修改.en…...

Distilling the Knowledge in a Neural Network【论文解析】

Distilling the Knowledge in a Neural Network 知识蒸馏 摘要1 引言摘要 提高几乎任何机器学习算法性能的一种非常简单的方法是在相同的数据上训练许多不同的模型,然后对它们的预测进行平均处理[3]。不幸的是,使用整个模型集合进行预测既繁琐又可能过于计算密集,特别是如果…...

基于深度学习的自动驾驶汽车语义分割与场景标注算法研究。

自动驾驶汽车是当前研究的热点领域之一&#xff0c;其中基于深度学习的语义分割与场景标注算法在自动驾驶汽车的视觉感知中具有重要作用。本文将围绕自动驾驶汽车的语义分割与场景标注算法展开研究。 一、研究背景 随着人工智能技术的不断发展&#xff0c;自动驾驶汽车逐渐成…...

国内可用超丝滑ChatGPT4.0(附网址及微信入口)

镜像网站的设置可以带来以下优势&#xff1a; 1.提高访问速度&#xff1a;由于镜像网站部署在全球不同的服务器上&#xff0c;用户可以从最近的服务器访问网站&#xff0c;从而减少延迟和提高加载速度。 2.增加可用性&#xff1a;如果主网站遭遇故障或网络拥堵&#xff0c;用…...

C++实现分布式网络通信框架RPC(3)--rpc调用端

目录 一、前言 二、UserServiceRpc_Stub 三、 CallMethod方法的重写 头文件 实现 四、rpc调用端的调用 实现 五、 google::protobuf::RpcController *controller 头文件 实现 六、总结 一、前言 在前边的文章中&#xff0c;我们已经大致实现了rpc服务端的各项功能代…...

调用支付宝接口响应40004 SYSTEM_ERROR问题排查

在对接支付宝API的时候&#xff0c;遇到了一些问题&#xff0c;记录一下排查过程。 Body:{"datadigital_fincloud_generalsaas_face_certify_initialize_response":{"msg":"Business Failed","code":"40004","sub_msg…...

3.3.1_1 检错编码(奇偶校验码)

从这节课开始&#xff0c;我们会探讨数据链路层的差错控制功能&#xff0c;差错控制功能的主要目标是要发现并且解决一个帧内部的位错误&#xff0c;我们需要使用特殊的编码技术去发现帧内部的位错误&#xff0c;当我们发现位错误之后&#xff0c;通常来说有两种解决方案。第一…...

基于Flask实现的医疗保险欺诈识别监测模型

基于Flask实现的医疗保险欺诈识别监测模型 项目截图 项目简介 社会医疗保险是国家通过立法形式强制实施&#xff0c;由雇主和个人按一定比例缴纳保险费&#xff0c;建立社会医疗保险基金&#xff0c;支付雇员医疗费用的一种医疗保险制度&#xff0c; 它是促进社会文明和进步的…...

解锁数据库简洁之道:FastAPI与SQLModel实战指南

在构建现代Web应用程序时&#xff0c;与数据库的交互无疑是核心环节。虽然传统的数据库操作方式&#xff08;如直接编写SQL语句与psycopg2交互&#xff09;赋予了我们精细的控制权&#xff0c;但在面对日益复杂的业务逻辑和快速迭代的需求时&#xff0c;这种方式的开发效率和可…...

【AI学习】三、AI算法中的向量

在人工智能&#xff08;AI&#xff09;算法中&#xff0c;向量&#xff08;Vector&#xff09;是一种将现实世界中的数据&#xff08;如图像、文本、音频等&#xff09;转化为计算机可处理的数值型特征表示的工具。它是连接人类认知&#xff08;如语义、视觉特征&#xff09;与…...

C# 类和继承(抽象类)

抽象类 抽象类是指设计为被继承的类。抽象类只能被用作其他类的基类。 不能创建抽象类的实例。抽象类使用abstract修饰符声明。 抽象类可以包含抽象成员或普通的非抽象成员。抽象类的成员可以是抽象成员和普通带 实现的成员的任意组合。抽象类自己可以派生自另一个抽象类。例…...

解决本地部署 SmolVLM2 大语言模型运行 flash-attn 报错

出现的问题 安装 flash-attn 会一直卡在 build 那一步或者运行报错 解决办法 是因为你安装的 flash-attn 版本没有对应上&#xff0c;所以报错&#xff0c;到 https://github.com/Dao-AILab/flash-attention/releases 下载对应版本&#xff0c;cu、torch、cp 的版本一定要对…...

NLP学习路线图(二十三):长短期记忆网络(LSTM)

在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...