XCTF-RSA-2:baigeiRSA2、 cr4-poor-rsa
baigeiRSA2
题目描述

import libnum
from Crypto.Util import number
from functools import reduce
from secret import flagn = 5
size = 64
while True:ps = [number.getPrime(size) for _ in range(n)]if len(set(ps)) == n:breake = 65537
n = reduce(lambda x, y: x*y, ps)
m = libnum.s2n(flag)
c = pow(m, e, n)print('n = %d' % n)
print('c = %d' % c)
n = 175797137276517400024170861198192089021253920489351812147043687817076482376379806063372376015921
c = 144009221781172353636339988896910912047726260759108847257566019412382083853598735817869933202168
分析解密
- 模数N不大,对其尝试分解,得到5个因子(P1,P2,P3,P4,P5)
- 题目中while循环生成了一个五元组ps
- n = reduce(lambda x, y: x*y, ps)
- reduce(function,iterable)对参数iterable进行function累积操作
- lambda匿名函数,在 lambda 关键字之后、冒号左边为参数列表,可不带参数,也可有多个参数。若有多个参数,则参数间用逗号隔开,冒号右边为 lambda 表达式的返回值。
- 因此n为ps里面元素的乘积,即 n = p s [ 1 ] ∗ p s [ 2 ] ∗ p s [ 3 ] ∗ p s [ 4 ] ∗ p s [ 5 ] = P 1 ∗ P 2 ∗ P 3 ∗ P 4 ∗ P 5 n=ps[1]*ps[2]*ps[3]*ps[4]*ps[5]=P1*P2*P3*P4*P5 n=ps[1]∗ps[2]∗ps[3]∗ps[4]∗ps[5]=P1∗P2∗P3∗P4∗P5
- 计算欧拉函数φ(n):
欧拉函数 φ(n) 的定义是小于等于 n 的正整数中与 n 互素的数的个数。
积的欧拉函数等于各个因子的欧拉函数之积。比如,φ(56)=φ(8×7)=φ(8)×φ(7)=4×6=24
因此此题中,根据因子都是素数,有
φ(n)=φ(P1*P2*P3*P4*P5)=φ(P1)*φ(P2)*φ(P3)*φ(P4)*φ(P5)=(P1-1)*(P2-1)*(P3-1)*(P4-1)*(P5-1) - 得到 φ(n) 后,即可计算私钥d,进行解密:
d和e在模数φ(n)下互为逆元:d = gmpy2.invert(e,phi)
m = c d m o d n c^d mod n cdmodn = pow(c,d,n) - 最后将明文m转换为字符串 libnum.n2s(int(m))
脚本如下
import gmpy2
import libnum
n = 175797137276517400024170861198192089021253920489351812147043687817076482376379806063372376015921
c = 144009221781172353636339988896910912047726260759108847257566019412382083853598735817869933202168
e = 65537
'''
循环生成了一个五元组ps
n = reduce(lambda x, y: x*y, ps)
reduce(function,iterable)对参数iterable进行function累积操作
lambda匿名函数,在 lambda 关键字之后、冒号左边为参数列表,可不带参数,也可有多个参数。若有多个参数,则参数间用逗号隔开,冒号右边为 lambda 表达式的返回值。
因此n为ps里面元素的乘积
'''
#分解n有:
P1 = 9401433281508038261
P2 = 13716847112310466417
P3 = 11215197893925590897
P4 = 10252499084912054759
P5 = 11855687732085186571#求欧拉函数φ(n)
#欧拉函数 φ(n) 的定义是小于等于 n 的正整数中与 n 互素的数的个数。
#积的欧拉函数等于各个因子的欧拉函数之积。比如,φ(56)=φ(8×7)=φ(8)×φ(7)=4×6=24
#因此此题中φ(n)=φ(P1*P2*P3*P4*P5)=φ(P1)*φ(P2)*φ(P3)*φ(P4)*φ(P5)=(P1-1)*(P2-1)*(P3-1)*(P4-1)*(P5-1),因子都是素数
phi = (P1-1)*(P2-1)*(P3-1)*(P4-1)*(P5-1)d = gmpy2.invert(e,phi)
m = pow(c,d,n)
print(libnum.n2s(int(m)))#b'HSCTF{@Tv0_br3ad5_c1ip_cHe3se_!@}'
cr4-poor-rsa
题目描述
文件下载下来是一个.gz的压缩包,用Bandizip打开里面是密钥文件key.pub和flag文件flag.b64
!注意:不能就这样直接提取文件出来,得到的flag文件内容可能会出错。
正确的方式是将.gz补全后缀名,修改为.gz.tar压缩包,然后解压文件。
分析解密
- 对密钥pub文件提取n和e
哈哈我也不会,找了一下怎么打开key.pub文件
参考链接:https://blog.csdn.net/ChaoYue_miku/article/details/125749442
from Crypto.PublicKey import RSA
#获取密钥文件中的n和e
with open("./key.pub","rb") as file:key = file.read()
pub = RSA.importKey(key)
n = pub.n
e = pub.e
print("n=",n)
print("e=",e)
- 提取出n,e后,分解n得到p,q,然后可以计算私钥d
d = gmpy2.invert(e,(p-1)*(q-1)) - 提取密文后,解密flag:
生成私钥priv:rsa.PrivateKey(n,e,d,p,q)
先base64解密:base64.b64decode(cipher)
再rsa解密:rsa.decrypt(c,priv)
脚本如下:
from Crypto.PublicKey import RSA
import gmpy2
import base64
import rsa#获取密钥文件中的n和e
with open("./key.pub","rb") as file:key = file.read()
pub = RSA.importKey(key)
n = pub.n
e = pub.e
print("n=",n)
print("e=",e)
'''
#n= 833810193564967701912362955539789451139872863794534923259743419423089229206473091408403560311191545764221310666338878019
#e= 65537
'''#分解n,计算d
p = 863653476616376575308866344984576466644942572246900013156919
q = 965445304326998194798282228842484732438457170595999523426901
d = gmpy2.invert(e,(p-1)*(q-1))
print("d=",d)'''
根据n,e,d,p,q生成私钥,进行解密
先base64解密,再rsa解密
'''
priv = rsa.PrivateKey(n,e,d,p,q) #生成私钥
with open("./flag.b64","rb") as file: #提取密文cipher cipher = file.read()
print("cipher=",cipher)
c = base64.b64decode(cipher) #base64解密
flag = rsa.decrypt(c,priv).decode() #rsa解密
print("flag=",flag)#flag= ALEXCTF{SMALL_PRIMES_ARE_BAD}
相关文章:
XCTF-RSA-2:baigeiRSA2、 cr4-poor-rsa
baigeiRSA2 题目描述 import libnum from Crypto.Util import number from functools import reduce from secret import flagn 5 size 64 while True:ps [number.getPrime(size) for _ in range(n)]if len(set(ps)) n:breake 65537 n reduce(lambda x, y: x*y, ps) m …...
js 根据word文档模板导出内容
一、创建word导出模板 1、本地创建一个test.docx 2、将最终需要的文档内容及样式编辑完成(图1) 3、将所需动态值的位置,替换为变量参数(图2) 注: 动态值书写 图1 图2 模板值的书写要求 二、项目中使用 1、安装依赖 npm install docxtemplater-image-module-free --save n…...
AIGC | 如何用“Flow”,轻松解决复杂业务问题
随着LLM(大语言模型)的爆火,不少企业都在寻找通过LLM解决企业业务问题的方法,以达到降本增效的效果。但是,当面对较为复杂的业务问题(如:背景资料多、问题分类多、条件判断复杂、涉及模块多等&a…...
多级菜单 树结构 排序 前端 后端 java
目录 省流: 正文: v1.0版 前端传的值: 后端代码: v2.0版 v3.0版 省流: 前端提交过来整个树即可。 给整个树进行sort。代码如下: public static void sort(List<Node> tree){int i 0;for…...
LAN-Free在数据备份时的应用与优势
在灾备领域中,常见的备份架构有LAN、LAN-Free和Server-Free备份,其中LAN备份架构图见图1,LAN-Free备份架构图见图2,Server-Free备份架构图见图3,途中红色箭头为备份数据流量走向: 图 1 图 2 图 3 从图1、图…...
HTML 文档声明和语言设置
HTML 文档声明 DOCTYPE 文档类型声明,用于告诉浏览器的解析器,该以那种 HTML 版本来解析这个文件。 HTML 5 版本声明 <!DOCTYPE html>XHTML 1.0 严格版声明 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http:/…...
【C++基础知识学习笔记】精华版(复习专用)
常用语法 函数重载(Overload) 规则: 函数名相同 参数个数不同、参数类型不同、参数顺序不同 注意: 返回值类型与函数重载无关 调用函数时,实参的隐式类型转换可能会产生二义性 默认参数 C++ 允许函数设置默认参数,在调用时可以根据情况省略实参。规则如下: 默认参数只能…...
探索ChatGPT在学术写作中的应用与心得
随着人工智能的迅猛发展,ChatGPT作为一种强大的自然语言处理模型,逐渐在学术界引起了广泛的关注。本文将探讨ChatGPT在学术写作中的应用,并分享使用ChatGPT进行学术写作时的一些经验和心得。 01 — ChatGPT在学术写作中的应用 1.文献综述和…...
Android:怎么学习才能更好的进大厂呢?
怎么学习才能更好的进大厂呢? 很多朋友都在问这个问题。 其实没有什么特别的技巧,就是依靠自己的毅力和决心。一天做不到,就一个月;一个月做不到,就一年。只要有决心,无论学历或资历如何,都不是…...
CSS标点符号换行问题
最近遇到一个奇怪的现象,元素中中文文本正常显示,但是加了一堆符号后中文文本居然换行了. div{width: 200px;border: 1px solid blue;word-break: break-all;} <div>文本</div>经过研究发现,因为标点符号不允许出现在行首和行尾,连带着符号…...
jdbc Preparestatement防止SQL注入的原理
2023-10-28T03:37:11.264132Z 2 Execute select * from users where username liulemon and password \ or \1\ 1\ 可以看到这一行,预编译时?变成了转义字符 useServerPrepStmtstrue加上这句才能预编译...
如何控制 LLM 的输出格式和解析其输出结果?
现在很多人对于如何使用像 ChatGPT 这样的 LLM 已经比较有经验了,可以使用各种不同的 Prompt 得到自己想要的结果。但有时候我们的使用场景不局限于手动操作,而是需要结合程序去调用 API,并且解析 API 的返回结果,从而实现一些自动…...
【Linux】 ps 命令使用
ps (英文全拼:process status)命令用于显示当前进程的状态,类似于 windows 的任务管理器。 语法 ps [选项] ps命令 -Linux手册页 著者 ps最初由布兰科兰克斯特撰写<lankestefwi.uva.nl>。迈克尔K约翰逊<johnsonmred…...
C++二分查找算法的应用:长度递增组的最大数目
本文涉及的基础知识点 二分查找 题目 给你一个下标从 0 开始、长度为 n 的数组 usageLimits 。 你的任务是使用从 0 到 n - 1 的数字创建若干组,并确保每个数字 i 在 所有组 中使用的次数总共不超过 usageLimits[i] 次。此外,还必须满足以下条件&…...
提示3D标题编辑器仍在运行怎么解决,以及3D标题编辑器怎么使用
在进行视频剪辑时,尤其是剪辑一些带有文字的开场视频,一般都会使用具有立体效果的3D标题,这样制作出来的视频效果不仅好看,还非常的炫酷,但是对于一些刚刚开始接触视频剪辑的小伙伴来说,可能对3D标题还不是…...
1. PPT高效初始化设置
1. PPT高效初始化设置 软件安装:Office 2019 主题和颜色 颜色可以在白天与黑夜切换,护眼 切换成了黑色 撤回次数 撤回次数太少,只有20次怎么办 自动保存 有时忘记保存就突然关闭,很需要一个自动保存功能 图片压缩 图…...
el-cascader级联选择器选中一个全选中问题
问题 只选中一个却把同级全选中 解决 :props中添加label、value、children属性 label、value、children属性值需要和后端返回的集合中的字段名保持一致 后端返回数据:...
Opencascad(C++)-创建自定义坐标系
文章目录 1、前言2、在Opencascad中显示小的坐标系3、在Opencascad中创建自定义的坐标系 1、前言 在Opencascad开发时,在view中可以显示小的坐标系,但是有时我们需要在建模时创建基准坐标系,当然可以作为工件坐标系也可以作为基准坐标系。本…...
MySQL数据库入门到大牛_01_数据库概述
文章目录 1. 为什么要使用数据库2. 数据库与数据库管理系统2.1 数据库的相关概念2.2 数据库与数据库管理系统的关系2.3 常见的数据库管理系统排名(DBMS)2.4 常见的数据库介绍 3. MySQL介绍3.1 概述3.2 MySQL发展史重大事件3.3 关于MySQL 8.03.4 Why choose MySQL?3.5 Oracle v…...
Web - Servlet详解
目录 前言 一 . Servlet简介 1.1 动态资源和静态资源 1.2 Servlet简介 二 . Servlet开发流程 2.1 目标 2.2 开发过程 三 . Servlet注解方式配置 编辑 四 . servlet生命周期 4.1 生命周期简介 4.2 生命周期测试 4.3 生命周期总结 五 . servlet继承结构 5.1 ser…...
云启出海,智联未来|阿里云网络「企业出海」系列客户沙龙上海站圆满落地
借阿里云中企出海大会的东风,以**「云启出海,智联未来|打造安全可靠的出海云网络引擎」为主题的阿里云企业出海客户沙龙云网络&安全专场于5.28日下午在上海顺利举办,现场吸引了来自携程、小红书、米哈游、哔哩哔哩、波克城市、…...
MMaDA: Multimodal Large Diffusion Language Models
CODE : https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA,它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构…...
ESP32 I2S音频总线学习笔记(四): INMP441采集音频并实时播放
简介 前面两期文章我们介绍了I2S的读取和写入,一个是通过INMP441麦克风模块采集音频,一个是通过PCM5102A模块播放音频,那如果我们将两者结合起来,将麦克风采集到的音频通过PCM5102A播放,是不是就可以做一个扩音器了呢…...
大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计
随着大语言模型(LLM)参数规模的增长,推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长,而KV缓存的内存消耗可能高达数十GB(例如Llama2-7B处理100K token时需50GB内存&a…...
Angular微前端架构:Module Federation + ngx-build-plus (Webpack)
以下是一个完整的 Angular 微前端示例,其中使用的是 Module Federation 和 npx-build-plus 实现了主应用(Shell)与子应用(Remote)的集成。 🛠️ 项目结构 angular-mf/ ├── shell-app/ # 主应用&…...
Aspose.PDF 限制绕过方案:Java 字节码技术实战分享(仅供学习)
Aspose.PDF 限制绕过方案:Java 字节码技术实战分享(仅供学习) 一、Aspose.PDF 简介二、说明(⚠️仅供学习与研究使用)三、技术流程总览四、准备工作1. 下载 Jar 包2. Maven 项目依赖配置 五、字节码修改实现代码&#…...
Kafka主题运维全指南:从基础配置到故障处理
#作者:张桐瑞 文章目录 主题日常管理1. 修改主题分区。2. 修改主题级别参数。3. 变更副本数。4. 修改主题限速。5.主题分区迁移。6. 常见主题错误处理常见错误1:主题删除失败。常见错误2:__consumer_offsets占用太多的磁盘。 主题日常管理 …...
Cilium动手实验室: 精通之旅---13.Cilium LoadBalancer IPAM and L2 Service Announcement
Cilium动手实验室: 精通之旅---13.Cilium LoadBalancer IPAM and L2 Service Announcement 1. LAB环境2. L2公告策略2.1 部署Death Star2.2 访问服务2.3 部署L2公告策略2.4 服务宣告 3. 可视化 ARP 流量3.1 部署新服务3.2 准备可视化3.3 再次请求 4. 自动IPAM4.1 IPAM Pool4.2 …...
【51单片机】4. 模块化编程与LCD1602Debug
1. 什么是模块化编程 传统编程会将所有函数放在main.c中,如果使用的模块多,一个文件内会有很多代码,不利于组织和管理 模块化编程则是将各个模块的代码放在不同的.c文件里,在.h文件里提供外部可调用函数声明,其他.c文…...
21-Oracle 23 ai-Automatic SQL Plan Management(SPM)
小伙伴们,有没有迁移数据库完毕后或是突然某一天在同一个实例上同样的SQL, 性能不一样了、业务反馈卡顿、业务超时等各种匪夷所思的现状。 于是SPM定位开始,OCM考试中SPM必考。 其他的AWR、ASH、SQLHC、SQLT、SQL profile等换作下一个话题…...
