[python 刷题] 1248 Count Number of Nice Subarrays
[python 刷题] 1248 Count Number of Nice Subarrays
题目如下:
Given an array of integers
numsand an integerk. A continuous subarray is called nice if there arekodd numbers on it.Return the number of nice sub-arrays.
这道题和 1343 Number of Sub-arrays of Size K and Average Greater than or Equal to Threshold 挺像的
双指针
先声明,我的写法不是最有效的,其他的双指针/滑动窗口的解法会更加的高效,不过我感觉对我来说这么写是最好理解的
首先题目要求必须要有 k 个奇数,以题目中 Input: nums = [2,2,2,1,2,2,1,2,2,2], k = 2 为例,它的 base case 是这样的:

同时,因为两边都是偶数,因此指针是可以向两边延长的,演唱后也都是满足题目需求,即,子数组中有 k 个奇数
首先用两个指针指向 l l l 和 r r r,使用 c o u n t e r counter counter 计算 [ l , l + 1 , . . . , r ] [l, l + 1, ..., r] [l,l+1,...,r] 中的奇数。每次移动 r r r 的时候,更新 c o u n t e r counter counter,这时候会出现两个需要照顾的条件:
-
c o u n t e r > k counter > k counter>k
这个时候就需要不断移动 l l l,一直到 c o u n t e r = = k counter == k counter==k
-
c o u n t e r = = k counter == k counter==k
依旧以上面的案例来说,因为左侧指针没有动过,实际上应该是这样的情况:

这时候新建一个 t e m p temp temp 指针代替右侧指针,并且将 d i f f diff diff 保存下来:

这里的 d i f f diff diff 代表着不同的组合,即 l l l 移动一格时所会产生的不同组合,在移动左侧指针时,每次添加 d i f f diff diff 即可
代码如下:
class Solution:def numberOfSubarrays(self, nums: List[int], k: int) -> int:n = len(nums)res, count = 0, 0l, r = 0, 0while r < n:if nums[r] % 2:count += 1while count > k:if nums[l] % 2:count -= 1l += 1if count == k:res += 1t = r + 1while t < n and not nums[t] % 2:res += 1t += 1diff = t - rr = t - 1while l < r and not nums[l] % 2:res += diffl += 1r += 1return res
prefix sum
使用 prefix sum 就比较简单了,这里是将所有出现奇数的次数全都保存下来到一个变量中,同时,会形成一个 {odd_num: even_num_freq + 1} 的对应关系,这样可以保存不同的组合
如 Input: nums = [2,2,2,1,2,2,1,2,2,2], k = 2,它的键值对的关系为 {0: 4, 1: 3, 2: 4},其中保存的对应关系为:
0: [default_value, 2,2,2]
1: [1,2,2]
2: [1,2,2,2]
这样,通过 count[odd_count - k] 就能够获取对应的变化,也就是上一个解法中的 d i f f diff diff,代码如下:
class Solution:def numberOfSubarrays(self, nums: List[int], k: int) -> int:n = len(nums)# 这里使用数组而非字典,不过其原理是一样的# 使用 n + 1 是因为 0 为没有出现 odd 的情况# 而当数组中所有的成员都是 odd 时,count 的长度就为 n + 1count = [0] * (n + 1)# 这个是 base case# 空数组也是一个合法的 subarraycount[0] = 1odd_count = 0res = 0for num in nums:if num % 2 == 1:odd_count += 1if odd_count >= k:res += count[odd_count - k]count[odd_count] += 1return res
相关文章:
[python 刷题] 1248 Count Number of Nice Subarrays
[python 刷题] 1248 Count Number of Nice Subarrays 题目如下: Given an array of integers nums and an integer k. A continuous subarray is called nice if there are k odd numbers on it. Return the number of nice sub-arrays. 这道题和 1343 Number of S…...
堆叠注入 [GYCTF2020]Blacklist1
打开题目 判断注入点 输入1,页面回显 输入1 页面报错 输入 1 # 页面正常,说明是单引号的字符型注入 我们输入1; show databases; # 说明有6个数据库 1; show tables; # 说明有三个表 我们直接查看FlagHere的表结构 1;desc FlagHere;# 发…...
算法:Java构建二叉树并递归实现二叉树的前序、中序、后序遍历
先自定义一下二叉树的类: // Definition for a binary tree node. public class TreeNode {int val;TreeNode left;TreeNode right;TreeNode() {}TreeNode(int val) { this.val val; }TreeNode(int val, TreeNode left, TreeNode right) {this.val val;this.left…...
既然有了字节流,为什么还要有字符流?
字符流和字节流之间的区别主要在于它们处理数据的方式和用途: 字节流:字节流以字节为单位进行数据的读取和写入,适用于处理二进制数据,如图像、音频和视频文件。字节流是处理底层数据的理想选择,它不会对数据进行编码…...
3+单细胞+代谢+WGCNA+机器学习
今天给同学们分享一篇生信文章“Identification of new co-diagnostic genes for sepsis and metabolic syndrome using single-cell data analysis and machine learning algorithms”,这篇文章发表Front Genet.期刊上,影响因子为3.7。 结果解读&#x…...
音乐推荐与管理系统Python+Django网页界面+协同过滤推荐算法
一、介绍 音乐推荐与管理系统。本系统采用Python作为主要开发语言,前端使用HTML、CSS、BootStrap等技术搭建界面平台,后端使用Django框架处理请求,并基于Ajax等技术实现前端与后端的数据通信。在音乐个性推荐功能模块中采用通过Python编写协…...
(论文阅读15/100)You Only Look Once: Unified, Real-Time Object Detection
文献阅读笔记 简介 题目 You Only Look Once: Unified, Real-Time Object Detection 作者 Joseph Redmon, Santosh Divvala, Ross Girshick, Ali Farhadi 原文链接 https://arxiv.org/pdf/1506.02640.pdf 《You Only Look Once: Unified, Real-Time Object Detection》…...
init进程启动过程
首语 init进程是Android系统中用户空间的第一个进程,进程号为1,是Android系统启动的一个关键步骤,作为第一个进程,它的主要工作是创建Zygote和启动属性服务等。init进程是由多个源文件共同组成的,源码目录在system/co…...
全网最详细的【shell脚本的入门】
🏅我是默,一个在CSDN分享笔记的博主。📚📚 🌟在这里,我要推荐给大家我的专栏《Linux》。🎯🎯 🚀无论你是编程小白,还是有一定基础的程序员,这…...
CH10_简化条件逻辑
分解条件表达式(Decompose Conditional) if (!aDate.isBefore(plan.summerStart) && !aDate.isAfter(plan.summerEnd))charge quantity * plan.summerRate; elsecharge quantity * plan.regularRate plan.regularServiceCharge;if (summer())…...
nn.LayerNorm解释
这个是层归一化。我们输入一个参数,这个参数就必须与最后一个维度对应。但是我们也可以输入多个维度,但是必须从后向前对应。 import torch import torch.nn as nna torch.rand((100,5)) c nn.LayerNorm([5]) print(c(a).shape)a torch.rand((100,5,…...
Springboot搭建微服务案例之Eureka注册中心
一、父工程依赖管理 <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0"xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation"http://maven.apache.org…...
【MySQL】用户管理权限控制
文章目录 前言一. 用户管理1. 创建用户2. 删除用户3. 修改用户密码 二. 权限控制1. 用户授权2. 查看权限3. 回收权限 结束语 前言 MySQL的数据其实也以文件形式保存,而登录信息同样保存在文件中 MySQL的数据在Linux下默认路径是/var/lib/mysql 登录MySQL同样也可以…...
若依框架前后端分离版服务器部署,前端nginx的配置
server {listen 80;server_name 120.46.177.184;index index.php index.html index.htm default.php default.htm default.html;root /www/wwwroot/qilaike-vue/dist;#SSL-START SSL相关配置,请勿删除或修改下一行带注释的404规则#error_page 404/404.html;#SSL-END…...
基于单片机的滚筒洗衣机智能控制系统设计
收藏和点赞,您的关注是我创作的动力 文章目录 概要 一、系统整体设计方案2.1控制系统的功能2.2设计的主要内容 二、硬件设计3.1 控制系统整体框图3.2 电源电路 三 软件设计主程序设计仿真设计 四、 结论 概要 因此我们需要一个完善的智能系统来设计一个全自动滚筒洗…...
简述多模态学习中,对齐、融合和表示
在多模态学习中,对齐、融合和表示是三个核心概念,它们相互关联,共同支持多模态数据的处理和分析。 对齐(Alignment) 对齐是多模态学习中的一个关键步骤,它涉及到如何在不同的数据模态之间发现和建立对应关…...
Kotlin 进阶函数式编程技巧
Kotlin 进阶函数式编程技巧 Kotlin 简介 软件开发环境不断变化,要求开发人员不仅适应,更要进化。Kotlin 以其简洁的语法和强大的功能迅速成为许多人进化过程中的信赖伙伴。虽然 Kotlin 的初始吸引力可能是它的简洁语法和与 Java 的互操作性,…...
操作系统——内存映射文件(王道视频p57)
1.总体概述: 2.传统文件访问方式: 我认为,这种方式最大的劣势在于,如果要对整个文件的不同部分进行多次操作的话,这样确实开销可能会大一些,而且程序员还要指定对应的“分块”载入到内存中 3.内存映射文件…...
王道p18 07.将两个有序顺序表合并为一个新的有序顺序表,并由函数返回结果顺序表。(c语言代码实现)
视频讲解在这:👇 p18 第7题 c语言代码实现王道数据结构课后代码题_哔哩哔哩_bilibili 本题代码如下 int merge(struct sqlist* A, struct sqlist* B, struct sqlist* C) {if (A->length B->length > C->length)//大于顺序表的最大长度r…...
2024最新mac电脑清理垃圾的软件有哪些?
mac电脑是许多人喜爱的电子产品,它拥有优美的设计、流畅的操作系统和强大的性能。但是,随着使用时间的增长,mac电脑也会积累一些不必要的垃圾文件,这些文件会占用宝贵的存储空间,影响电脑的运行速度和稳定性。因此&…...
逻辑回归:给不确定性划界的分类大师
想象你是一名医生。面对患者的检查报告(肿瘤大小、血液指标),你需要做出一个**决定性判断**:恶性还是良性?这种“非黑即白”的抉择,正是**逻辑回归(Logistic Regression)** 的战场&a…...
.Net框架,除了EF还有很多很多......
文章目录 1. 引言2. Dapper2.1 概述与设计原理2.2 核心功能与代码示例基本查询多映射查询存储过程调用 2.3 性能优化原理2.4 适用场景 3. NHibernate3.1 概述与架构设计3.2 映射配置示例Fluent映射XML映射 3.3 查询示例HQL查询Criteria APILINQ提供程序 3.4 高级特性3.5 适用场…...
在 Nginx Stream 层“改写”MQTT ngx_stream_mqtt_filter_module
1、为什么要修改 CONNECT 报文? 多租户隔离:自动为接入设备追加租户前缀,后端按 ClientID 拆分队列。零代码鉴权:将入站用户名替换为 OAuth Access-Token,后端 Broker 统一校验。灰度发布:根据 IP/地理位写…...
在Ubuntu中设置开机自动运行(sudo)指令的指南
在Ubuntu系统中,有时需要在系统启动时自动执行某些命令,特别是需要 sudo权限的指令。为了实现这一功能,可以使用多种方法,包括编写Systemd服务、配置 rc.local文件或使用 cron任务计划。本文将详细介绍这些方法,并提供…...
Python 包管理器 uv 介绍
Python 包管理器 uv 全面介绍 uv 是由 Astral(热门工具 Ruff 的开发者)推出的下一代高性能 Python 包管理器和构建工具,用 Rust 编写。它旨在解决传统工具(如 pip、virtualenv、pip-tools)的性能瓶颈,同时…...
云原生安全实战:API网关Kong的鉴权与限流详解
🔥「炎码工坊」技术弹药已装填! 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 一、基础概念 1. API网关(API Gateway) API网关是微服务架构中的核心组件,负责统一管理所有API的流量入口。它像一座…...
Vite中定义@软链接
在webpack中可以直接通过符号表示src路径,但是vite中默认不可以。 如何实现: vite中提供了resolve.alias:通过别名在指向一个具体的路径 在vite.config.js中 import { join } from pathexport default defineConfig({plugins: [vue()],//…...
热烈祝贺埃文科技正式加入可信数据空间发展联盟
2025年4月29日,在福州举办的第八届数字中国建设峰会“可信数据空间分论坛”上,可信数据空间发展联盟正式宣告成立。国家数据局党组书记、局长刘烈宏出席并致辞,强调该联盟是推进全国一体化数据市场建设的关键抓手。 郑州埃文科技有限公司&am…...
数据库正常,但后端收不到数据原因及解决
从代码和日志来看,后端SQL查询确实返回了数据,但最终user对象却为null。这表明查询结果没有正确映射到User对象上。 在前后端分离,并且ai辅助开发的时候,很容易出现前后端变量名不一致情况,还不报错,只是单…...
LangChain【6】之输出解析器:结构化LLM响应的关键工具
文章目录 一 LangChain输出解析器概述1.1 什么是输出解析器?1.2 主要功能与工作原理1.3 常用解析器类型 二 主要输出解析器类型2.1 Pydantic/Json输出解析器2.2 结构化输出解析器2.3 列表解析器2.4 日期解析器2.5 Json输出解析器2.6 xml输出解析器 三 高级使用技巧3…...
