K-均值聚类算法
K-均值聚类算法是一种常用的无监督学习算法,目的是将一组数据点分为 K 个聚类。它的主要思想是通过迭代的方式不断调整聚类中心的位置,使得数据点与最近的聚类中心之间的距离最小。
算法步骤如下:
- 初始化 K 个聚类中心,可以随机选择数据点作为聚类中心或者使用其他初始化方法;
- 将每个数据点分配到距离最近的聚类中心所在的类别中;
- 对于每个聚类,重新计算其聚类中心(即所有数据点的平均值);
- 重复步骤 2 和 3,直到聚类中心不再发生变化或达到最大迭代次数。
K-均值聚类算法的优点包括:
- 算法简单,易于实现和扩展;
- 能够自动发现数据中的聚类结构,无需标记数据集;
- 适用于处理大规模数据集,时间复杂度为 O(n * K * I),其中 n 是数据点的数量,K 是聚类数,I 是迭代次数。
K-均值聚类算法的缺点包括:
- 对于非凸形状的数据分布效果不佳;
- 对于不同大小和密度的聚类效果不佳;
- 对于具有噪声的数据集容易受到噪声的影响;
- 聚类个数 K 需要预先设定,且对最终结果有较大影响。
因此,在使用 K-均值聚类算法时需要根据数据特点进行合理的参数选择和预处理,以达到较好的聚类效果。
相关文章:
K-均值聚类算法
K-均值聚类算法是一种常用的无监督学习算法,目的是将一组数据点分为 K 个聚类。它的主要思想是通过迭代的方式不断调整聚类中心的位置,使得数据点与最近的聚类中心之间的距离最小。 算法步骤如下: 初始化 K 个聚类中心,可以随机…...
Xbox漫游指南
以Xbox series s为例 开机启动 用手柄连接,注意两颗电池要方向相反插入,虽然里面2个插槽长一样; Xbox APP极其难用,放弃,直接用手柄连接 转区 只需要一个空U盘,大小不限制,格式化为NTPS格式…...
降低毕业论文写作压力的终极指南
亲爱的同学们,时光荏苒,转眼间你们即将踏入毕业生的行列。毕业论文作为本科和研究生阶段的重要任务,不仅是对所学知识的综合运用,更是一次对自己学术能力和专业素养的全面考验。然而,论文写作常常伴随着压力和焦虑&…...
SELECT COUNT( * ) 与SELECT COUNT( 1 ) 区别
在 SQL 中,SELECT COUNT(*) 和 SELECT COUNT(1) 都用于统计符合条件的行数,但它们在具体实现和效率上有一些区别。 SELECT COUNT(*):这是一种常见且通用的写法,它会统计所有符合查询条件的行数,包括所有列,…...
[python 刷题] 1248 Count Number of Nice Subarrays
[python 刷题] 1248 Count Number of Nice Subarrays 题目如下: Given an array of integers nums and an integer k. A continuous subarray is called nice if there are k odd numbers on it. Return the number of nice sub-arrays. 这道题和 1343 Number of S…...
堆叠注入 [GYCTF2020]Blacklist1
打开题目 判断注入点 输入1,页面回显 输入1 页面报错 输入 1 # 页面正常,说明是单引号的字符型注入 我们输入1; show databases; # 说明有6个数据库 1; show tables; # 说明有三个表 我们直接查看FlagHere的表结构 1;desc FlagHere;# 发…...
算法:Java构建二叉树并递归实现二叉树的前序、中序、后序遍历
先自定义一下二叉树的类: // Definition for a binary tree node. public class TreeNode {int val;TreeNode left;TreeNode right;TreeNode() {}TreeNode(int val) { this.val val; }TreeNode(int val, TreeNode left, TreeNode right) {this.val val;this.left…...
既然有了字节流,为什么还要有字符流?
字符流和字节流之间的区别主要在于它们处理数据的方式和用途: 字节流:字节流以字节为单位进行数据的读取和写入,适用于处理二进制数据,如图像、音频和视频文件。字节流是处理底层数据的理想选择,它不会对数据进行编码…...
3+单细胞+代谢+WGCNA+机器学习
今天给同学们分享一篇生信文章“Identification of new co-diagnostic genes for sepsis and metabolic syndrome using single-cell data analysis and machine learning algorithms”,这篇文章发表Front Genet.期刊上,影响因子为3.7。 结果解读&#x…...
音乐推荐与管理系统Python+Django网页界面+协同过滤推荐算法
一、介绍 音乐推荐与管理系统。本系统采用Python作为主要开发语言,前端使用HTML、CSS、BootStrap等技术搭建界面平台,后端使用Django框架处理请求,并基于Ajax等技术实现前端与后端的数据通信。在音乐个性推荐功能模块中采用通过Python编写协…...
(论文阅读15/100)You Only Look Once: Unified, Real-Time Object Detection
文献阅读笔记 简介 题目 You Only Look Once: Unified, Real-Time Object Detection 作者 Joseph Redmon, Santosh Divvala, Ross Girshick, Ali Farhadi 原文链接 https://arxiv.org/pdf/1506.02640.pdf 《You Only Look Once: Unified, Real-Time Object Detection》…...
init进程启动过程
首语 init进程是Android系统中用户空间的第一个进程,进程号为1,是Android系统启动的一个关键步骤,作为第一个进程,它的主要工作是创建Zygote和启动属性服务等。init进程是由多个源文件共同组成的,源码目录在system/co…...
全网最详细的【shell脚本的入门】
🏅我是默,一个在CSDN分享笔记的博主。📚📚 🌟在这里,我要推荐给大家我的专栏《Linux》。🎯🎯 🚀无论你是编程小白,还是有一定基础的程序员,这…...
CH10_简化条件逻辑
分解条件表达式(Decompose Conditional) if (!aDate.isBefore(plan.summerStart) && !aDate.isAfter(plan.summerEnd))charge quantity * plan.summerRate; elsecharge quantity * plan.regularRate plan.regularServiceCharge;if (summer())…...
nn.LayerNorm解释
这个是层归一化。我们输入一个参数,这个参数就必须与最后一个维度对应。但是我们也可以输入多个维度,但是必须从后向前对应。 import torch import torch.nn as nna torch.rand((100,5)) c nn.LayerNorm([5]) print(c(a).shape)a torch.rand((100,5,…...
Springboot搭建微服务案例之Eureka注册中心
一、父工程依赖管理 <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0"xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation"http://maven.apache.org…...
【MySQL】用户管理权限控制
文章目录 前言一. 用户管理1. 创建用户2. 删除用户3. 修改用户密码 二. 权限控制1. 用户授权2. 查看权限3. 回收权限 结束语 前言 MySQL的数据其实也以文件形式保存,而登录信息同样保存在文件中 MySQL的数据在Linux下默认路径是/var/lib/mysql 登录MySQL同样也可以…...
若依框架前后端分离版服务器部署,前端nginx的配置
server {listen 80;server_name 120.46.177.184;index index.php index.html index.htm default.php default.htm default.html;root /www/wwwroot/qilaike-vue/dist;#SSL-START SSL相关配置,请勿删除或修改下一行带注释的404规则#error_page 404/404.html;#SSL-END…...
基于单片机的滚筒洗衣机智能控制系统设计
收藏和点赞,您的关注是我创作的动力 文章目录 概要 一、系统整体设计方案2.1控制系统的功能2.2设计的主要内容 二、硬件设计3.1 控制系统整体框图3.2 电源电路 三 软件设计主程序设计仿真设计 四、 结论 概要 因此我们需要一个完善的智能系统来设计一个全自动滚筒洗…...
简述多模态学习中,对齐、融合和表示
在多模态学习中,对齐、融合和表示是三个核心概念,它们相互关联,共同支持多模态数据的处理和分析。 对齐(Alignment) 对齐是多模态学习中的一个关键步骤,它涉及到如何在不同的数据模态之间发现和建立对应关…...
使用docker在3台服务器上搭建基于redis 6.x的一主两从三台均是哨兵模式
一、环境及版本说明 如果服务器已经安装了docker,则忽略此步骤,如果没有安装,则可以按照一下方式安装: 1. 在线安装(有互联网环境): 请看我这篇文章 传送阵>> 点我查看 2. 离线安装(内网环境):请看我这篇文章 传送阵>> 点我查看 说明:假设每台服务器已…...
应用升级/灾备测试时使用guarantee 闪回点迅速回退
1.场景 应用要升级,当升级失败时,数据库回退到升级前. 要测试系统,测试完成后,数据库要回退到测试前。 相对于RMAN恢复需要很长时间, 数据库闪回只需要几分钟。 2.技术实现 数据库设置 2个db_recovery参数 创建guarantee闪回点,不需要开启数据库闪回。…...
ssc377d修改flash分区大小
1、flash的分区默认分配16M、 / # df -h Filesystem Size Used Available Use% Mounted on /dev/root 1.9M 1.9M 0 100% / /dev/mtdblock4 3.0M...
在四层代理中还原真实客户端ngx_stream_realip_module
一、模块原理与价值 PROXY Protocol 回溯 第三方负载均衡(如 HAProxy、AWS NLB、阿里 SLB)发起上游连接时,将真实客户端 IP/Port 写入 PROXY Protocol v1/v2 头。Stream 层接收到头部后,ngx_stream_realip_module 从中提取原始信息…...
Spring Boot面试题精选汇总
🤟致敬读者 🟩感谢阅读🟦笑口常开🟪生日快乐⬛早点睡觉 📘博主相关 🟧博主信息🟨博客首页🟫专栏推荐🟥活动信息 文章目录 Spring Boot面试题精选汇总⚙️ **一、核心概…...
汇编常见指令
汇编常见指令 一、数据传送指令 指令功能示例说明MOV数据传送MOV EAX, 10将立即数 10 送入 EAXMOV [EBX], EAX将 EAX 值存入 EBX 指向的内存LEA加载有效地址LEA EAX, [EBX4]将 EBX4 的地址存入 EAX(不访问内存)XCHG交换数据XCHG EAX, EBX交换 EAX 和 EB…...
Unity | AmplifyShaderEditor插件基础(第七集:平面波动shader)
目录 一、👋🏻前言 二、😈sinx波动的基本原理 三、😈波动起来 1.sinx节点介绍 2.vertexPosition 3.集成Vector3 a.节点Append b.连起来 4.波动起来 a.波动的原理 b.时间节点 c.sinx的处理 四、🌊波动优化…...
Unsafe Fileupload篇补充-木马的详细教程与木马分享(中国蚁剑方式)
在之前的皮卡丘靶场第九期Unsafe Fileupload篇中我们学习了木马的原理并且学了一个简单的木马文件 本期内容是为了更好的为大家解释木马(服务器方面的)的原理,连接,以及各种木马及连接工具的分享 文件木马:https://w…...
用机器学习破解新能源领域的“弃风”难题
音乐发烧友深有体会,玩音乐的本质就是玩电网。火电声音偏暖,水电偏冷,风电偏空旷。至于太阳能发的电,则略显朦胧和单薄。 不知你是否有感觉,近两年家里的音响声音越来越冷,听起来越来越单薄? —…...
SiFli 52把Imagie图片,Font字体资源放在指定位置,编译成指定img.bin和font.bin的问题
分区配置 (ptab.json) img 属性介绍: img 属性指定分区存放的 image 名称,指定的 image 名称必须是当前工程生成的 binary 。 如果 binary 有多个文件,则以 proj_name:binary_name 格式指定文件名, proj_name 为工程 名&…...
