基于计算机视觉的身份证识别系统 计算机竞赛
0 前言
🔥 优质竞赛项目系列,今天要分享的是
基于机器视觉的身份证识别系统
该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!
🧿 更多资料, 项目分享:
https://gitee.com/dancheng-senior/postgraduate
1 实现方法
1.1 原理
1.1.1 字符定位
在Android移动端摄像头拍摄的图片是彩色图像,上传到服务器后为了读取到身份证上的主要信息,就要去除其他无关的元素,因此对身份证图像取得它的灰度图并得到二值化图。
对身份证图像的的二值化有利于对图像内的信息的进一步处理,可以将待识别的信息更加突出。在OpenCV中,提供了读入图像接口函数imread,
首先通过imread将身份证图像读入内存中:
id_card_img = cv2.imread(path_img)
之后再调用转化为灰度图的接口函数cvtColor并给它传入参数COLOR_BGR2GRAY,它就可以实现彩色图到灰度图的转换,代码如下
gray_id_card_img = cv2.cvtColor(color_img, cv2.COLOR_BGR2GRAY)
preprocess_bg_mask = PreprocessBackgroundMask(boundary)
转化为二值化的灰度图后图像如图所示:

转换成灰度图之后要进行字符定位,通过每一行进行垂直投影,就可以找到所有字段的位置,具体如下:

然后根据像素点起始位置,确定字符区域,然后将字符区域一一对应放入存放字符的列表中:
vertical_peek_ranges = extract_peek_ranges_from_array(vertical_sum,minimun_val=40,minimun_range=1)vertical_peek_ranges2d.append(vertical_peek_ranges)
最后的效果图如图所示:

1.1.2 字符识别
身份证识别中,最重要的是能够识别身份证图像中的中文文字(包括数字和英文字母),这里学长采用深度学习的方式来做:
1)身份证图像涉及个人隐私,很难获取其数据训练集。针对此问题,我采用获取身份证上印刷体汉字和数字的数据训练集的方法,利用Python图像库(PIL)将13类汉字印刷体字体转换成6492个类别,建立了较大的字符训练集;
2)如何获取身份证图片上的字符是在设计中一个重要问题。我采用水平和垂直投影技术,首先对身份证图像进行预处理,然后对图片在水平和垂直方向上像素求和,区分字符与空白区域,完成了身份证图像中字符定位与分割工作,有很好的切分效果;
3)在模型训练中模型的选择与设计是一个重要的环节,本文选择Lenet模型,发现模型层次太浅,然后增加卷积层和池化层,设计出了改进的深层Lenet模型,然后采用Caffe深度学习工具对模型进行训练,并在训练好的模型上进行测试,实验表明,模型的测试精度达到96.2%。
1.1.3 深度学习算法介绍
深度学习技术被提出后,发展迅速,在人工智能领域取得了很好的成绩,越来越多优秀的神经网络也应运而生。深度学习通过建立多个隐层的深层次网络结构,比如卷积神经网络,可以用来研究并处理目前计算机视觉领域的一些热门的问题,如图像识别和图像检索。
深度学习建立从输入数据层到高层输出层语义的映射关系,免去了人工提取特征的步骤,建立了类似人脑神经网的分层模型结构。深度学习的示意图如图所示

1.1.4 模型选择
在进行网络训练前另一项关键的任务是模型的选择与配置,因为要保证模型的精度,要选一个适合本文身份证信息识别的网络模型。
首先因为汉字识别相当于一个类别很多的图片分类系统,所以先考虑深层的网络模型,优先采用Alexnet网络模型,对于汉字识别这种千分类的问题很合适,但是在具体实施时发现本文获取到的数据训练集每张图片都是6464大小的一通道的灰度图,而Alexnet的输入规格是224224三通道的RGB图像,在输入上不匹配,并且Alexnet在处理像素较高的图片时效果好,用在本文的训练中显然不合适。
其次是Lenet模型,没有改进的Lenet是一个浅层网络模型,如今利用这个模型对手写数字识别精度达到99%以上,效果很好,在实验时我利用在Caffe下的draw_net.py脚本并且用到pydot库来绘制Lenet的网络模型图,实验中绘制的原始Lenet网络模型图如图所示,图中有两个卷积层和两个池化层,网络层次比较浅。

2 算法流程

3 部分关键代码
cv2_color_img = cv2.imread(test_image)##放大图片resize_keep_ratio = PreprocessResizeKeepRatio(1024, 1024)cv2_color_img = resize_keep_ratio.do(cv2_color_img) ##转换成灰度图cv2_img = cv2.cvtColor(cv2_color_img, cv2.COLOR_RGB2GRAY)height, width = cv2_img.shape##二值化 调整自适应阈值 使得图像的像素值更单一、图像更简单adaptive_threshold = cv2.adaptiveThreshold(cv2_img, ##原始图像255, ##像素值上限cv2.ADAPTIVE_THRESH_GAUSSIAN_C, ##指定自适应方法Adaptive Method,这里表示领域内像素点加权和cv2.THRESH_BINARY, ##赋值方法(二值化)11, ## 规定领域大小(一个正方形的领域)2) ## 常数C,阈值等于均值或者加权值减去这个常数adaptive_threshold = 255 - adaptive_threshold## 水平方向求和,找到行间隙和字符所在行(numpy)horizontal_sum = np.sum(adaptive_threshold, axis=1)## 根据求和结果获取字符行范围peek_ranges = extract_peek_ranges_from_array(horizontal_sum)vertical_peek_ranges2d = []for peek_range in peek_ranges:start_y = peek_range[0] ##起始位置end_y = peek_range[1] ##结束位置line_img = adaptive_threshold[start_y:end_y, :]## 垂直方向求和,分割每一行的每个字符vertical_sum = np.sum(line_img, axis=0)## 根据求和结果获取字符行范围vertical_peek_ranges = extract_peek_ranges_from_array(vertical_sum,minimun_val=40, ## 设最小和为40minimun_range=1) ## 字符最小范围为1## 开始切割字符vertical_peek_ranges = median_split_ranges(vertical_peek_ranges)## 存放入数组中vertical_peek_ranges2d.append(vertical_peek_ranges)## 去除噪音,主要排除杂质,小的曝光点不是字符的部分filtered_vertical_peek_ranges2d = []for i, peek_range in enumerate(peek_ranges):new_peek_range = []median_w = compute_median_w_from_ranges(vertical_peek_ranges2d[i])for vertical_range in vertical_peek_ranges2d[i]:## 选取水平区域内的字符,当字符与字符间的间距大于0.7倍的median_w,说明是字符if vertical_range[1] - vertical_range[0] > median_w*0.7:new_peek_range.append(vertical_range)filtered_vertical_peek_ranges2d.append(new_peek_range)vertical_peek_ranges2d = filtered_vertical_peek_ranges2dchar_imgs = []crop_zeros = PreprocessCropZeros()resize_keep_ratio = PreprocessResizeKeepRatioFillBG(norm_width, norm_height, fill_bg=False, margin=4)for i, peek_range in enumerate(peek_ranges):for vertical_range in vertical_peek_ranges2d[i]:## 划定字符的上下左右边界区域x = vertical_range[0]y = peek_range[0]w = vertical_range[1] - xh = peek_range[1] - y## 生成二值化图char_img = adaptive_threshold[y:y+h+1, x:x+w+1]## 输出二值化图char_img = crop_zeros.do(char_img)char_img = resize_keep_ratio.do(char_img)## 加入字符图片列表中char_imgs.append(char_img)## 将列表转换为数组np_char_imgs = np.asarray(char_imgs)## 放入模型中识别并返回结果output_tag_to_max_proba = caffe_cls.predict_cv2_imgs(np_char_imgs)ocr_res = ""## 读取结果并展示for item in output_tag_to_max_proba:ocr_res += item[0][0]print(ocr_res.encode("utf-8"))## 生成一些Debug过程产生的图片if debug_dir is not None:path_adaptive_threshold = os.path.join(debug_dir,"adaptive_threshold.jpg")cv2.imwrite(path_adaptive_threshold, adaptive_threshold)seg_adaptive_threshold = cv2_color_img# color = (255, 0, 0)# for rect in rects:# x, y, w, h = rect# pt1 = (x, y)# pt2 = (x + w, y + h)# cv2.rectangle(seg_adaptive_threshold, pt1, pt2, color)color = (0, 255, 0)for i, peek_range in enumerate(peek_ranges):for vertical_range in vertical_peek_ranges2d[i]:x = vertical_range[0]y = peek_range[0]w = vertical_range[1] - xh = peek_range[1] - ypt1 = (x, y)pt2 = (x + w, y + h)cv2.rectangle(seg_adaptive_threshold, pt1, pt2, color)path_seg_adaptive_threshold = os.path.join(debug_dir,"seg_adaptive_threshold.jpg")cv2.imwrite(path_seg_adaptive_threshold, seg_adaptive_threshold)debug_dir_chars = os.path.join(debug_dir, "chars")os.makedirs(debug_dir_chars)for i, char_img in enumerate(char_imgs):path_char = os.path.join(debug_dir_chars, "%d.jpg" % i)cv2.imwrite(path_char, char_img)
4 效果展示



5 最后
🧿 更多资料, 项目分享:
https://gitee.com/dancheng-senior/postgraduate
相关文章:
基于计算机视觉的身份证识别系统 计算机竞赛
0 前言 🔥 优质竞赛项目系列,今天要分享的是 基于机器视觉的身份证识别系统 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🧿 更多资料, 项目分享: https://gitee.com/dancheng-sen…...
[python] logging输出到控制台(标准输出)
要将logging.info输出到控制台(标准输出),可以使用以下代码: import logging# 创建一个logger对象 logger logging.getLogger(__name__)# 创建一个控制台处理器 console_handler logging.StreamHandler()# 设置控制台处理器的输…...
uniapp 离线打包 google 登录
官方文档: Oauth 模块 | uni小程序SDK 其中有 clientid 和反向url clientid 是 xxxx.apps.googleusercontent.com 反向url 是 com.googleusercontent.apps.xxx...
【实战Flask API项目指南】之一 概述
实战Flask API项目指南之 概述 本系列文章将带你深入探索实战Flask API项目指南,通过跟随小菜的学习之旅,你将逐步掌握Flask在实际项目中的应用。让我们一起踏上这个精彩的学习之旅吧! 前言 小菜是一个Python编程爱好者,他目前…...
AD面试总结
文章目录 CK的面试1.自我介绍2.学习动机3.一天花多久时间4.兴趣爱好5.sql5.1 第二周那道题5.2 对时间盲注和布尔盲注的简单介绍5.3 盲注中可以替代sleep的替代函数 6.反序列化6.1 列举几个函数的触发时机6.2 __wakeup绕过的多种方法6.3 GC垃圾回收机制 7.死亡exit8.mysql8.1.练…...
从今年最硬科幻游戏中的思考
前言 最近有一款“完蛋,我被美女包围了”游戏火爆了,steam上一度达到排行榜第一最低也能到第八(销量据说到了100万份),接下来分享一下自己对于这一款游戏的思考,如果有其他想法,随时可以联系沟…...
Linux多值判断利用case...esac判断
利用这个判断,一定要注意格式的运用,非常容易出错 case $1 in #判断变量的值 "hello") #双引号注意,右括号 echo " afdbab " #语句段,没啥说的 ;; #两个分号结束第一个判断,…...
【教3妹学编程-算法题】重复的DNA序列
3妹:“太阳当空照,花儿对我笑,小鸟说早早早,你为什么背上炸药包” 2哥 :3妹,什么事呀这么开心呀。 3妹:2哥你看今天的天气多好啊,阳光明媚、万里无云、秋高气爽,适合秋游。 2哥&…...
jetsonTX2 nx配置yolov5和D435I相机,完整步骤
转载一篇问题解决博客:问题解决 一、烧录系统 使用SDK烧录 二、安装archiconda3 JETSON TX2 NX的架构是aarch64,与win10,linxu不同,所以不能安装Anaconda,这里安装对应的archiconda。 1. 安装 wget https://github.com/Archiconda/build-tools/rel…...
RflySim | 滤波器设计实验一
滤波器设计实验一 一. 无人机滤波器简介 无人机在飞行时会使用滤波器来处理传感器数据、控制飞行和稳定飞行,以及实现导航和定位等功能。卡尔曼滤波器是无人机领域中常见滤波器类型之一,也称为线性二次型估计,能够从一系列不完全且包含噪声不…...
设计模式——责任链模式(Chain of Responsibility Pattern)+ Spring相关源码
文章目录 一、责任链模式定义二、例子2.1 菜鸟教程2.1.1 定义一个抽象日志类2.1.2 定义日志类的具体实现类ConsoleLogger 、ErrorLogger 、FileLogger2.1.3 将日志类串起来,并使用 2.2 JDK源码——Filter2.3 Spring源码——HandlerInterceptor 三、其他设计模式 一、…...
游戏中的随机抽样算法
相关题目: 382. 链表随机节点 384. 打乱数组 398. 随机数索引 文章详解: 游戏中的随机抽样算法 class ListNode:def __init__(self, val0, nextNone):self.val valself.next nextclass RandListNode:"""382. 链表随机节点https://lee…...
【Qt之QtXlsx模块】安装及使用
1. 安装Perl,编译QtXlsx源码用 可以通过命令行进行查看是否已安装Perl。 下载及安装传送门:链接: https://blog.csdn.net/MrHHHHHH/article/details/134233707?spm1001.2014.3001.5502 1.1 未安装 命令:perl --version 显示以上是未安装…...
如何在 TFRecord 文件上训练 Keras 模型实现黑色素瘤分类器
简介 + 设置 TFRecords 存储一系列二进制记录,线性读取。它们是存储数据的有用格式,因为它们可以有效地读取。在此处了解有关 TFRecords 的更多信息 。 我们将探索如何轻松加载黑色素瘤分类器的 TFRecords。 import tensorflow as tf from functools import partial import…...
C++ 复制控制之复制构造函数
C类用三个特殊的成员函数:复制构造函数、赋值操作符和析构函数 来决定类对象之间的初始化或赋值时发生什么。所谓的“复制控制”即通过这三个成员函数控制对象复制的过程 复制构造函数首先是一个构造函数,它同所有其他的构造函数一样与类同名࿰…...
Windows ObjectType Hook 之 ParseProcedure
1、背景 Object Type Hook 是基于 Object Type的一种深入的 Hook,比起常用的 SSDT Hook 更为深入。 有关 Object Type 的分析见文章 《Windows驱动开发学习记录-ObjectType Hook之ObjectType结构相关分析》。 这里进行的 Hook 为 其中之一的 ParseProcedure。文章实…...
下载树莓派对应的64位Ubuntu系统步骤
说点废话:因为ros2需要安装在64位Ubuntu上面,所以安装64位最合适; 第一步打开https://cn.ubuntu.com/ 网站;选择下载--->iot----> 选择这个镜像文件下载。我觉得镜像文件是img格式的,跟iso文件区别是ÿ…...
网络运维Day03
文章目录 基本命令使用查看文本文件内容-cat命令分页查看文本文件-less命令查看CPU信息-lscpu命令查看系统内核版本-uname命令查看机修改主机名-hostname命令查看IP地址-ifconfig命令创建目录-mkdir命令创建空文件-touch命令查看文件前几行-head命令查看文件后几行-tail命令快速…...
LangChain+LLM实战---ChatGPT的工作原理
一个词一个词的输出 ChatGPT能够自动生成类似于人类书写的文本,这是非常了不起和出乎意料的。但它是如何做到的?为什么会有效果呢?我的目的在于大致概述ChatGPT内部发生了什么,然后探讨它为什么能够很好地生成我们认为有意义的文…...
Appium知多少
Appium我想大家都不陌生,这是主流的移动自动化工具,但你对它真的了解么?为什么很多同学搭建环境时碰到各种问题也而不知该如何解决。 appium为什么英语词典查不到中文含义? appium是一个合成词,分别取自“applicatio…...
前端倒计时误差!
提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...
《从零掌握MIPI CSI-2: 协议精解与FPGA摄像头开发实战》-- CSI-2 协议详细解析 (一)
CSI-2 协议详细解析 (一) 1. CSI-2层定义(CSI-2 Layer Definitions) 分层结构 :CSI-2协议分为6层: 物理层(PHY Layer) : 定义电气特性、时钟机制和传输介质(导线&#…...
CMake基础:构建流程详解
目录 1.CMake构建过程的基本流程 2.CMake构建的具体步骤 2.1.创建构建目录 2.2.使用 CMake 生成构建文件 2.3.编译和构建 2.4.清理构建文件 2.5.重新配置和构建 3.跨平台构建示例 4.工具链与交叉编译 5.CMake构建后的项目结构解析 5.1.CMake构建后的目录结构 5.2.构…...
YSYX学习记录(八)
C语言,练习0: 先创建一个文件夹,我用的是物理机: 安装build-essential 练习1: 我注释掉了 #include <stdio.h> 出现下面错误 在你的文本编辑器中打开ex1文件,随机修改或删除一部分,之后…...
将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?
Otsu 是一种自动阈值化方法,用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理,能够自动确定一个阈值,将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...
AI+无人机如何守护濒危物种?YOLOv8实现95%精准识别
【导读】 野生动物监测在理解和保护生态系统中发挥着至关重要的作用。然而,传统的野生动物观察方法往往耗时耗力、成本高昂且范围有限。无人机的出现为野生动物监测提供了有前景的替代方案,能够实现大范围覆盖并远程采集数据。尽管具备这些优势…...
LLMs 系列实操科普(1)
写在前面: 本期内容我们继续 Andrej Karpathy 的《How I use LLMs》讲座内容,原视频时长 ~130 分钟,以实操演示主流的一些 LLMs 的使用,由于涉及到实操,实际上并不适合以文字整理,但还是决定尽量整理一份笔…...
【无标题】湖北理元理律师事务所:债务优化中的生活保障与法律平衡之道
文/法律实务观察组 在债务重组领域,专业机构的核心价值不仅在于减轻债务数字,更在于帮助债务人在履行义务的同时维持基本生活尊严。湖北理元理律师事务所的服务实践表明,合法债务优化需同步实现三重平衡: 法律刚性(债…...
DiscuzX3.5发帖json api
参考文章:PHP实现独立Discuz站外发帖(直连操作数据库)_discuz 发帖api-CSDN博客 简单改造了一下,适配我自己的需求 有一个站点存在多个采集站,我想通过主站拿标题,采集站拿内容 使用到的sql如下 CREATE TABLE pre_forum_post_…...
书籍“之“字形打印矩阵(8)0609
题目 给定一个矩阵matrix,按照"之"字形的方式打印这个矩阵,例如: 1 2 3 4 5 6 7 8 9 10 11 12 ”之“字形打印的结果为:1,…...
