为机器学习算法准备数据(Machine Learning 研习之八)
本文还是同样建立在前两篇的基础之上的!
属性组合实验
希望前面的部分能让您了解探索数据并获得洞察力的几种方法。您发现了一些数据怪癖,您可能希望在将数据提供给机器学习算法之前对其进行清理,并且发现了属性之间有趣的相关性,特别是与目标属性
之间的相关性。您还注意到一些属性具有向右倾斜的分布,因此您可能需要转换它们(例如,通过计算它们的对数或平方根)。当然,你的里程会因每个项目而有很大的不同,但大致的想法是相似的。
在为机器学习算法准备数据之前,您可能需要做的最后一件事是尝试各种属性组合。例如,如果你不知道一个地区有多少住户,那么这个地区的房间总数就不是很有用。你真正想要的是每个家庭的房间数量。同样,卧室总数本身也不是很有用:你可能想对比一下房间的数量。每个家庭的人口似乎也是一个有趣的属性组合。创建这些新属性如下:
housing["rooms_per_house"] = housing["total_rooms"] / housing["households"]
housing["bedrooms_ratio"] = housing["total_bedrooms"] / housing["total_rooms"]
housing["people_per_house"] = housing["population"] / housing["households"]
然后你再看一遍相关矩阵:

!新的bedrooms_ratio属性与房屋中值的相关性要比与房间或卧室总数的相关性大得多。显然,卧室/房间比率较低的房子往往更贵。每个家庭的房间数量也比一个地区的房间总数更能说明问题-很明显,房
子越大,就越贵。
这一轮的探索不需要绝对彻底;关键是从正确的角度出发,并迅速获得见解,这将帮助您获得第一个相当好的原型。但是这是一个迭代的过程:一旦你建立并运行了一个原型,你就可以分析它的输出以获得更多的见解,然后再回到这个探索步骤。
为机器学习算法准备数据
是时候为您的机器学习算法准备数据了。你应该为此编写函数,而不是手工操作,这有几个很好的理由:
- 这将允许您在任何数据集上轻松重现这些转换(例如,下次获得新数据集时)。
- 您将逐步构建一个转换函数库,以便在未来的项目中重用。
- 您可以在实时系统中使用这些函数来转换新数据,然后再将其输入到您的算法中。
- 这将使您能够轻松地尝试各种转换,并查看哪种转换组合效果最好。
但首先,恢复到一个干净的训练集(通过再次复制strat_train_set)。您还应该将预测变量和标签分开,因为您不一定希望对预测变量和目标值应用相同的转换(请注意,drop()创建数据的副本,并且不影响strat_train_set):
housing = strat_train_set.drop("median_house_value", axis=1)
housing_labels = strat_train_set["median_house_value"].copy()
清除数据
大多数机器学习算法无法处理缺失的功能,因此您需要处理这些功能。例如,您之前注意到total_bedrooms属性有一些缺失值。你有三个选项可以解决这个问题:
- 去掉相应的区。
- 去掉整个属性。
- 将缺失值设置为某个值(零、均值、中位数等)。这就是所谓的归罪。
您可以使用PandasDataFrame的dropna () 、drop () 和fillna ()方法轻松完成这些任务:
housing.dropna(subset=["total_bedrooms"], inplace=True) # option 1
housing.drop("total_bedrooms", axis=1) # option 2
median = housing["total_bedrooms"].median() # option 3
housing["total_bedrooms"].fillna(median, inplace=True)
您决定使用选项3,因为它的破坏性最小,但是您将使用一个方便的Scikit-Learn类:Simplelmputer,而不是前面的代码。这样做的好处是,它将存储每个特征的中值:这将使得它不仅可以估算训练集上的缺失值,还可以估算验证集、测试集和输入到模型的任何新数据上的缺失值。要使用它,首先需要创建一个Simplelmputer实例,指定要将每个属性的缺失值替换为该属性的中位数:
from sklearn.impute import SimpleImputer
imputer = SimpleImputer(strategy="median")
由于中位数只能在数值属性上计算,因此您需要创建一个仅具有数值属性的数据副本(这将排除文本属性ocean_proximity):
housing_num = housing.select_dtypes(include=[np.number])
现在,您可以使用fit()方法将补缺器实例拟合到训练数据:
imputer.fit(housing_num)
估算器只是计算每个属性的中位数,并将结果存储在它的statistics_instance变量中。只有total_bedrooms属性有缺失值,但您无法确定系统上线后的新数据中不会有任何缺失值,因此更安全的做法是将补缺器应用于所有数值属性:

现在,您可以使用这个"训练过的"估算器通过用学习到的中位数替换缺失值来转换训练集:
X = imputer.transform(housing_num)
缺失的值也可以替换为平均值(strategy=“mean”),或替换为最频繁的值(strategy=“most_frequent”),或替换为常值(strategy=“constant”, fill_value=…)。后两种策略支持非数值数据。
sklear.impute软件包中还有更强大的imputer(都仅用于数值特性):
- KNNImputer将每个缺失值替换为该功能的k-近邻值的平均
值。距离是基于所有可用的功能。- Iterativelmputer为每个特征训练回归模型,以根据所有其他可用
特征预测缺失值。然后,它会根据更新的数据再次训练模型,并
多次重复该过程,在每次迭代时改进模型和替换值。
Scikit-Learn转换器输出NumPy数组(或有时SciPy稀疏矩阵),即使它们被输入熊猫数据帧。“因此,inputer.Transform(Home_Num)的输出是NumPy数组:X既没有列名,也没有索引。幸运的是,在DataFrame中包装X并从宿主num中恢复列名和索引并不难:
housing_tr = pd.DataFrame(X, columns=housing_num.columns,
index=housing_num.index)
处理文本和分类属性
到目前为止,我们只处理了数字属性,但您的数据也可能包含文本属性。在这个数据集中,只有一个:ocean_proximity属性。让我们看看它的值的前几个实例:

它不是任意的文本:有有限数量的可能值,每个值代表一个类别。所以这个属性是一个分类属性。大多数机器学习算法更喜欢与数字打交道,所以让我们将这些类别从文本转换为数字。为此,我们可以使用Scikit-Learn的OrdinalEncoder类:
from sklearn.preprocessing import OrdinalEncoder
ordinal_encoder = OrdinalEncoder()
housing_cat_encoded = ordinal_encoder.fit_transform(housing_cat)
housing_cat_encoded中的前几个编码值是这样的:

您可以使用categories_instance变量获取类别列表。它是一个列表,包含每个分类属性的一维类别数组(在本例中,列表包含单个数组,因为只有一个分类属性):

这种表示法的一个问题是,ML算法将假设两个附近的值比两个遥远的值更相似。这在某些情况下可能是没有问题的(例如,对于已排序的类别(如“坏”、“平均”、“好”和“优秀”),但显然海洋邻近栏的情况并非如此(例如,类别0和4显然比类别0和1更相似)。要解决这个问题,一个常见的解决方案是为每个类别创建一个二进制属性:一个属性在类别为“<1H海洋”时等于1(否则为0),另一个属性在“内陆”时等于1(否则为0),依此类推。这称为单热编码,因为只有一个属性将等于1(热),而其他属性将等于0(冷)。新属性有时被称为伪属性。Scikit-Learn提供了一个OneHotEncoder类来将分类值转换为单热向量:
from sklearn.preprocessing import OneHotEncoder
cat_encoder = OneHotEncoder()
housing_cat_1hot = cat_encoder.fit_transform(housing_cat)
默认情况下,OneHotEncoder的输出是SciPy稀疏矩阵,而不是NumPyarray:

稀疏矩阵是大多数包含零的矩阵的一种非常有效的表示形式。实际上,它内部只存储非零值及其位置。当一个分类属性有数百或数千个类别时,单热编码会产生一个非常大的矩阵,其中除了每行只有一个1之外,其余都是0。在这种情况下,稀疏矩阵正是您所需要的:它将节省大量内存并加快计算速度。你可以使用一个稀疏矩阵,就像一个普通的2D数组,12但是如果你想把它转换成一个(密集的)NumPy数组,只需要调用toarray()方法:

或者,您可以在创建OneHotEncoder时设置sparse=False,在这种情况下,transform()方法将直接返回一个常规(密集)NumPy数组。
与OrdinalEncoder一样,您可以使用编码器的categories_instance变量获取类别列表:

Pandas有一个名为get_dummies()的函数,它也将每个分类特征转换为单热点表示,
每个类别有一个二进制特征:

它看起来很好很简单,那么为什么不使用它来代替OneHotEncoder呢?OneHotEncoder的优点是它能记住训练的类别。这一点非常重要,因为一旦您的模型投入生产,就应该提供与训练期间完全相同的功能:不多也不少。看看我们的训练好的cat_encoder在转换相同的df_test时输出(使用transform(),而不是fit_transform ()):

看到区别了吗get_dummies()只看到两个类别,所以它输出两列,而OneHotEncoder按照正确的顺序为每个学习到的类别输出一列。而且,如果您给get_dummies()提供一个包含未知类别DataFrame(例如,“《2HOPEN”),那么它将很高兴地为其生成一列:

但OneHotEncoder更聪明:它将检测未知类别并引发异常。如果你愿意,你可以将handle_unknown超参数设置为"ignore",在这种情况下,它将用零表示未知类别:

使用DataFrame拟合任何Scikit-Learn估计器时,估计器将列名存储在feature_names_in_attribute中。Scikit-Learn然后确保任何DataFrame在此之后被馈送到该估算器(例如要转换()或预测())具有相同的列名。Transformers还提供get_feature_names_out ()方法,您可以使用该方法围绕Transformers的输出构建DataFrame:

相关文章:
为机器学习算法准备数据(Machine Learning 研习之八)
本文还是同样建立在前两篇的基础之上的! 属性组合实验 希望前面的部分能让您了解探索数据并获得洞察力的几种方法。您发现了一些数据怪癖,您可能希望在将数据提供给机器学习算法之前对其进行清理,并且发现了属性之间有趣的相关性,…...
基于Python OpenCV的金铲铲自动进游戏、D牌...
基于Python OpenCV的金铲铲自动进游戏、D牌... 1. 自动点击进入游戏1.1 环境准备1.2 功能实现2. 自动D牌3. 游戏结束自动退1. 自动点击进入游戏 PS: 本测试只用于交流学习OpenCV的相关知识,不能用于商业用途,后果自负。 1.1 环境准备 需要金铲铲在win10的模拟器,我们这里选…...
c++中httplib使用
httplib文件链接:百度网盘 请输入提取码 提取码:kgnq json解析库:百度网盘 请输入提取码 提取码:oug0 一、获取token 打开postman, 在body这个参数中点击raw,输入用户名和密码 然后需要获取到域名和地址。 c++代码如下: #include "httplib.h" #in…...
Vite 的基本原理,和 webpack 在开发阶段的比较
目录 1,webpack 的流程2,Vite 的流程简单编译 3,总结 主要对比开发阶段。 1,webpack 的流程 开发阶段大致流程:指定一个入口文件,对相关的模块(js css img 等)先进行打包࿰…...
[开源]免费开源MES系统/可视化数字大屏/自动排班系统
开源系统概述: 万界星空科技免费MES、开源MES、商业开源MES、市面上最好的开源MES、MES源代码、免费MES、免费智能制造系统、免费排产系统、免费排班系统、免费质检系统、免费生产计划系统。 万界星空开源MES制造执行系统的Java开源版本。开源mes系统包括系统管理…...
python如何使用gspread读取google在线excel数据?
一、背景 公司使用google在线excel管理测试用例,为了方便把手工测试用到的测试数据用来做自动化用例测试数据,所以就想使用python读取在线excel数据,通过数据驱动方式,完成自动化回归测试,提升手动复制,粘…...
线程同步——互斥量解锁、解锁
类似与进程间通信信号量的加锁解锁。 对互斥量进行加锁后,任何其他试图在此对互斥量加锁的线程都会被阻塞,直到当前线程释放该互斥锁。如果释放互斥锁时有多个线程被阻塞,所有在该互斥锁上的阻塞线程都会变成可运行状态,第一个变…...
数据结构(c语言版) 顺序表
代码 #include <stdio.h> #include <stdlib.h>typedef int E; //这里我们的元素类型就用int为例吧,先起个别名//定义结构体 struct List{E * array;int capacity; //数组的容量int size; };//给结构体指针起别名 typedef struct List * ArrayLis…...
Springboot 集成 RocketMq(入门)
1.RocketMq安装部署 Linux 安装 RocketMq-CSDN博客 2.添加依赖包 <dependency><groupId>org.apache.rocketmq</groupId><artifactId>rocketmq-spring-boot-starter</artifactId><version>2.2.3</version> </dependency> 3.配…...
Elasticsearch:ES|QL 中的数据丰富
在之前的文章 “Elasticsearch:ES|QL 查询语言简介”,我有介绍 ES|QL 的 ENRICH 处理命令。ES|QL ENRICH 处理命令在查询时将来自一个或多个源索引的数据与 Elasticsearch 丰富索引中找到的字段值组合相结合。这个有点类似于关系数据库查询中所使用的 jo…...
【linux编程】linux文件IO高级I/O函数介绍和代码示例
Linux文件IO高级I/O函数用法是指如何使用这些函数来实现高效和灵活的文件读写操作,它们包括以下几类: 分散读和集中写:readv和writev函数可以一次性地从一个文件描述符读取或写入多个缓冲区,而不需要多次调用read或write函数。这样可以减少系统调用的开销,提高I/O效率。存…...
jQuery获取地址栏GET参数值
jQuery获取地址栏GET参数值 封装方法: window.location 是获取当前页面地址 // 获取地址栏参数 function GetUrlString(name){var reg new RegExp("(^|&)" name "([^&]*)(&|$)");var r window.location.search.substr(1).match…...
JAVA应用中线程池设置多少合适?
目录 1、机器配置: 2、核心线程数 3、最大线程数多少合适? 4、理论基础 5、测试验证 一个线程跑满一个核心的利用率 6个线程 12 个线程:所有核的cpu利用率都跑满 有io操作 6、计算公式 7、决定最大线程数的流程: 1、机器…...
.Net Core 3.1 解决数据大小限制
微软官网文档上对.NET Core3.1解决数据大小限制有详细的介绍。下面是根据自己的情况进行的总结,我们可以把.Core项目部署在IIS上,也可以利用Kestrel进行部署。这两种方式处理数据大小限制的方式不一样,具体如下: 一、部署在IIS上…...
【音视频 | opus】opus编码的Ogg封装文件详解
😁博客主页😁:🚀https://blog.csdn.net/wkd_007🚀 🤑博客内容🤑:🍭嵌入式开发、Linux、C语言、C、数据结构、音视频🍭 🤣本文内容🤣&a…...
【微信小程序】自定义组件(一)
自定义组件 组件的创建与引用1、创建组件2、引用组件3、全局引用VS局部引用4、组件和页面的区别 样式1、组件样式隔离2、组件样式隔离的注意点3、stylelsolation的可选值 数据、方法和属性1、data数据2、methods方法3、properties4、data和properties区别5、使用setData修改pr…...
如何通过一条数字人三维动画宣传片,打造出数字文旅
越来越多虚拟人,以文化挖掘者的身份通过数字人三维动画宣传片,打通次元壁,助力文化传播形式创造性转化、创新性表达,赋予文化发展新动能。 如南方都市报民间博物馆文化探寻者“岭梅香”,由一艘在南宋时期失事的沉船“南…...
【MongoDB】索引 - 数组字段的多键索引
数组字段创建索引时,MongoDB会为数组中的每个元素创建索引键(多键索引),多键索引支持数组字段的高效查询。 一、准备工作 这里准备一些数据 db.shop.insertMany([{_id: 1, name: "水果店1", fruits: ["apple&qu…...
2023.11.5 关于 Spring 创建 和 使用
目录 创建 Spring 项目 1.创建 Maven 项目 2.添加 Spring 依赖 将 Bean 对象存储到 Spring 容器中 创建 Bean 存储 Bean ApplicationContext 获取 Bean BeanFactory 获取 Bean ApplicationContext 和 BeanFactory 的区别 获取 Bean 的三种方式 根据 Bean id 获取…...
3D目标检测实战 | 图解KITTI数据集评价指标AP R40(附Python实现)
目录 1 准确率和召回率2 P-R曲线的绘制3 AP R11与AP R40标准4 实际案例 1 准确率和召回率 首先给出 T P TP TP、 F P FP FP、 F N FN FN、 T N TN TN的概念 真阳性 True Positive T P TP TP 预测为正(某类)且真值也为正(某类)的样本数,可视为 I o U > I o U t…...
(LeetCode 每日一题) 3442. 奇偶频次间的最大差值 I (哈希、字符串)
题目:3442. 奇偶频次间的最大差值 I 思路 :哈希,时间复杂度0(n)。 用哈希表来记录每个字符串中字符的分布情况,哈希表这里用数组即可实现。 C版本: class Solution { public:int maxDifference(string s) {int a[26]…...
网络六边形受到攻击
大家读完觉得有帮助记得关注和点赞!!! 抽象 现代智能交通系统 (ITS) 的一个关键要求是能够以安全、可靠和匿名的方式从互联车辆和移动设备收集地理参考数据。Nexagon 协议建立在 IETF 定位器/ID 分离协议 (…...
地震勘探——干扰波识别、井中地震时距曲线特点
目录 干扰波识别反射波地震勘探的干扰波 井中地震时距曲线特点 干扰波识别 有效波:可以用来解决所提出的地质任务的波;干扰波:所有妨碍辨认、追踪有效波的其他波。 地震勘探中,有效波和干扰波是相对的。例如,在反射波…...
JavaScript 中的 ES|QL:利用 Apache Arrow 工具
作者:来自 Elastic Jeffrey Rengifo 学习如何将 ES|QL 与 JavaScript 的 Apache Arrow 客户端工具一起使用。 想获得 Elastic 认证吗?了解下一期 Elasticsearch Engineer 培训的时间吧! Elasticsearch 拥有众多新功能,助你为自己…...
8k长序列建模,蛋白质语言模型Prot42仅利用目标蛋白序列即可生成高亲和力结合剂
蛋白质结合剂(如抗体、抑制肽)在疾病诊断、成像分析及靶向药物递送等关键场景中发挥着不可替代的作用。传统上,高特异性蛋白质结合剂的开发高度依赖噬菌体展示、定向进化等实验技术,但这类方法普遍面临资源消耗巨大、研发周期冗长…...
理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端
🌟 什么是 MCP? 模型控制协议 (MCP) 是一种创新的协议,旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议,它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...
【快手拥抱开源】通过快手团队开源的 KwaiCoder-AutoThink-preview 解锁大语言模型的潜力
引言: 在人工智能快速发展的浪潮中,快手Kwaipilot团队推出的 KwaiCoder-AutoThink-preview 具有里程碑意义——这是首个公开的AutoThink大语言模型(LLM)。该模型代表着该领域的重大突破,通过独特方式融合思考与非思考…...
React19源码系列之 事件插件系统
事件类别 事件类型 定义 文档 Event Event 接口表示在 EventTarget 上出现的事件。 Event - Web API | MDN UIEvent UIEvent 接口表示简单的用户界面事件。 UIEvent - Web API | MDN KeyboardEvent KeyboardEvent 对象描述了用户与键盘的交互。 KeyboardEvent - Web…...
Nuxt.js 中的路由配置详解
Nuxt.js 通过其内置的路由系统简化了应用的路由配置,使得开发者可以轻松地管理页面导航和 URL 结构。路由配置主要涉及页面组件的组织、动态路由的设置以及路由元信息的配置。 自动路由生成 Nuxt.js 会根据 pages 目录下的文件结构自动生成路由配置。每个文件都会对…...
[10-3]软件I2C读写MPU6050 江协科技学习笔记(16个知识点)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16...
