【Spark分布式内存计算框架——Spark Streaming】5. DStream(上)
3. DStream
SparkStreaming模块将流式数据封装的数据结构:DStream(Discretized Stream,离散化数据流,连续不断的数据流),代表持续性的数据流和经过各种Spark算子操作后的结果数据流。
3.1 DStream 是什么
离散数据流(DStream)是Spark Streaming最基本的抽象。它代表了一种连续的数据流,要么从某种数据源提取数据,要么从其他数据流映射转换而来。DStream内部是由一系列连续的RDD组成的,每个RDD都包含了特定时间间隔内的一批数据,如下图所示:
DStream本质上是一个:一系列时间上连续的RDD(Seq[RDD]),DStream = Seq[RDD]。
DStream = Seq[RDD]
DStream相当于一个序列(集合),里面存储的数据类型为RDD(Streaming按照时间间隔划分流式数据)
对DStream的数据进行操作也是按照RDD为单位进行的。
通过WEB UI界面可知,对DStream调用函数操作,底层就是对RDD进行操作,发现很多时候DStream中函数与RDD中函数一样的。
DStream中每批次数据RDD在处理时,各个RDD之间存在依赖关系,DStream直接也有依赖关系,RDD具有容错性,那么DStream也具有容错性。
上图相关说明:
1)、每一个椭圆形表示一个RDD
2)、椭圆形中的每个圆形代表一个RDD中的一个Partition分区
3)、每一列的多个RDD表示一个DStream(图中有三列所以有三个DStream)
4)、每一行最后一个RDD则表示每一个Batch Size所产生的中间结果RDD
Spark Streaming将流式计算分解成多个Spark Job,对于每一时间段数据的处理都会经过Spark DAG图分解以及Spark的任务集的调度过程。
3.2 DStream Operations
DStream类似RDD,里面包含很多函数,进行数据处理和输出操作,主要分为两大类:
- DStream#Transformations:将一个DStream转换为另一个DStream
http://spark.apache.org/docs/2.4.5/streaming-programming-guide.html#transformations-on-dstreams - DStream#Output Operations:将DStream中每批次RDD处理结果resultRDD输出
http://spark.apache.org/docs/2.4.5/streaming-programming-guide.html#output-operations-on-dstreams
函数概述
DStream中包含很多函数,大多数与RDD中函数类似,主要分为两种类型:
其一:转换函数【Transformation函数】
DStream中还有一些特殊函数,针对特定类型应用使用的函数,比如updateStateByKey状态函数、window窗口函数等,后续具体结合案例讲解。
其二:输出函数【Output函数】
DStream中每批次结果RDD输出使用foreachRDD函数,前面使用的print函数底层也是调用foreachRDD函数,截图如下所示:
在DStream中有两个重要的函数,都是针对每批次数据RDD进行操作的,更加接近底层,性能更好,强烈推荐使用:
- 转换函数transform:将一个DStream转换为另外一个DStream;
- 输出函数foreachRDD:将一个DStream输出到外部存储系统;
在SparkStreaming企业实际开发中,建议:能对RDD操作的就不要对DStream操作,当调用DStream中某个函数在RDD中也存在,使用针对RDD操作。
转换函数:transform
通过源码认识transform函数,有两个方法重载,声明如下:
接下来使用transform函数,修改词频统计程序,具体代码如下:
import org.apache.spark.SparkConf
import org.apache.spark.rdd.RDD
import org.apache.spark.storage.StorageLevel
import org.apache.spark.streaming.dstream.{DStream, ReceiverInputDStream}
import org.apache.spark.streaming.{Seconds, StreamingContext}
/**
* 基于IDEA集成开发环境,编程实现从TCP Socket实时读取流式数据,对每批次中数据进行词频统计。
*/
object StreamingTransformRDD {
def main(args: Array[String]): Unit = {
// 1. 构建StreamingContext流式上下文实例对象
val ssc: StreamingContext = {
// a. 创建SparkConf对象,设置应用配置信息
val sparkConf = new SparkConf()
.setAppName(this.getClass.getSimpleName.stripSuffix("$"))
.setMaster("local[3]")
// b.创建流式上下文对象, 传递SparkConf对象,TODO: 时间间隔 -> 用于划分流式数据为很多批次Batch
val context = new StreamingContext(sparkConf, Seconds(5))
// c. 返回
context
}
// 2. 从数据源端读取数据,此处是TCP Socket读取数据
/*
def socketTextStream(
hostname: String,
port: Int,
storageLevel: StorageLevel = StorageLevel.MEMORY_AND_DISK_SER_2
): ReceiverInputDStream[String]
*/
val inputDStream: ReceiverInputDStream[String] = ssc.socketTextStream(
"node1.itcast.cn", //
9999, //
// TODO: 设置Block存储级别为先内存,不足磁盘,副本为1
storageLevel = StorageLevel.MEMORY_AND_DISK
)
// TODO: 3. 对每批次的数据进行词频统计
/*
transform表示对DStream中每批次数据RDD进行操作
def transform[U: ClassTag](transformFunc: RDD[T] => RDD[U]): DStream[U]
*/
// TODO: 在DStream中,能对RDD操作的不要对DStream操作。
val resultDStream: DStream[(String, Int)] = inputDStream.transform(rdd => {
val resultRDD: RDD[(String, Int)] = rdd
// 过滤不合格的数据
.filter(line => null != line && line.trim.length > 0)
// 按照分隔符划分单词
.flatMap(line => line.trim.split("\\s+"))
// 转换数据为二元组,表示每个单词出现一次
.map(word => (word, 1))
// 按照单词分组,聚合统计
.reduceByKey((tmp, item) => tmp + item)
resultRDD
})
// 4. 将结果数据输出 -> 将每批次的数据处理以后输出
resultDStream.print(10)
// 5. 对于流式应用来说,需要启动应用
ssc.start()
// 流式应用启动以后,正常情况一直运行(接收数据、处理数据和输出数据),除非人为终止程序或者程序异常停止
ssc.awaitTermination()
// 关闭流式应用(参数一:是否关闭SparkContext,参数二:是否优雅的关闭)
ssc.stop(stopSparkContext = true, stopGracefully = true)
}
}
查看WEB UI监控中每批次Batch数据执行Job的DAG图,直接显示针对RDD进行操作。
输出函数:foreachRDD
foreachRDD函数属于将DStream中结果数据RDD输出的操作,类似transform函数,针对每批次RDD数据操作,源码声明如下:
继续修改词频统计代码,自定义输出数据,具体代码如下:
import java.util.Date
import org.apache.commons.lang3.time.FastDateFormat
import org.apache.spark.SparkConf
import org.apache.spark.rdd.RDD
import org.apache.spark.storage.StorageLevel
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.streaming.dstream.{DStream, ReceiverInputDStream}
/**
* 基于IDEA集成开发环境,编程实现从TCP Socket实时读取流式数据,对每批次中数据进行词频统计。
*/
object StreamingOutputRDD {
def main(args: Array[String]): Unit = {
// 1. 构建StreamingContext流式上下文实例对象
val ssc: StreamingContext = {
// a. 创建SparkConf对象,设置应用配置信息
val sparkConf = new SparkConf()
.setAppName(this.getClass.getSimpleName.stripSuffix("$"))
.setMaster("local[3]")
// TODO:设置数据输出文件系统的算法版本为2
.set("spark.hadoop.mapreduce.fileoutputcommitter.algorithm.version", "2")
// b.创建流式上下文对象, 传递SparkConf对象,TODO: 时间间隔 -> 用于划分流式数据为很多批次Batch
val context = new StreamingContext(sparkConf, Seconds(5))
// c. 返回
context
}
// 2. 从数据源端读取数据,此处是TCP Socket读取数据
/*
def socketTextStream(
hostname: String,
port: Int,
storageLevel: StorageLevel = StorageLevel.MEMORY_AND_DISK_SER_2
): ReceiverInputDStream[String]
*/
val inputDStream: ReceiverInputDStream[String] = ssc.socketTextStream(
"node1.itcast.cn", //
9999, //
// TODO: 设置Block存储级别为先内存,不足磁盘,副本为1
storageLevel = StorageLevel.MEMORY_AND_DISK
)
// 3. 对每批次的数据进行词频统计
/*
transform表示对DStream中每批次数据RDD进行操作
def transform[U: ClassTag](transformFunc: RDD[T] => RDD[U]): DStream[U]
*/
// TODO: 在DStream中,能对RDD操作的不要对DStream操作。
val resultDStream: DStream[(String, Int)] = inputDStream.transform(rdd => {
val resultRDD: RDD[(String, Int)] = rdd
// 过滤不合格的数据
.filter(line => null != line && line.trim.length > 0)
// 按照分隔符划分单词
.flatMap(line => line.trim.split("\\s+"))
// 转换数据为二元组,表示每个单词出现一次
.map(word => (word, 1))
// 按照单词分组,聚合统计
.reduceByKey((tmp, item) => tmp + item)
resultRDD
})
// TODO: 4. 将结果数据输出 -> 将每批次的数据处理以后输出
/*
对DStream中每批次结果RDD数据进行输出操作
def foreachRDD(foreachFunc: (RDD[T], Time) => Unit): Unit
其中Time就是每批次BatchTime,Long类型数据, 转换格式:2020/05/10 16:53:25
*/
resultDStream.foreachRDD{ (rdd, time) =>
// 使用lang3包下FastDateFormat日期格式类,属于线程安全的
val batchTime: String = FastDateFormat.getInstance("yyyyMMddHHmmss")
.format(new Date(time.milliseconds))
println("-------------------------------------------")
println(s"Time: $batchTime")
println("-------------------------------------------")
// TODO: 先判断RDD是否有数据,有数据在输出
if(!rdd.isEmpty()){
// 对于结果RDD输出,需要考虑降低分区数目
val resultRDD = rdd.coalesce(1)
// 对分区数据操作
resultRDD.foreachPartition{iter =>iter.foreach(item => println(item))}
// 保存数据至HDFS文件
resultRDD.saveAsTextFile(s"datas/streaming/wc-output-${batchTime}")
}
}
// 5. 对于流式应用来说,需要启动应用
ssc.start()
// 流式应用启动以后,正常情况一直运行(接收数据、处理数据和输出数据),除非人为终止程序或者程序异常停止
ssc.awaitTermination()
// 关闭流式应用(参数一:是否关闭SparkContext,参数二:是否优雅的关闭)
ssc.stop(stopSparkContext = true, stopGracefully = true)
}
}
将SparkStreaming处理结果RDD数据保存到MySQL数据库或者HBase表中,代码该如何编写呢?
http://spark.apache.org/docs/2.4.5/streaming-programming-guide.html#design-patterns-for-using-foreachrdd
伪代码如下所示:
// 数据输出,将分析处理结果数据输出到MySQL表
resultDStream.foreachRDD{(rdd, time) =>
// 将BatchTime转换:2019/10/10 14:59:35
val batchTime = FastDateFormat.getInstance("yyyy/MM/dd HH:mm:ss").format(time.milliseconds)
println("-------------------------------------------")
println(s"Time: $batchTime")
println("-------------------------------------------")
// TODO:首先判断每批次结果RDD是否有值,有值才输出, 必须判断,提升性能
if(!rdd.isEmpty()){
rdd.foreachPartition{iter =>
// 第一步、获取连接:从数据库连接池中获取连接
val conn: Connection = null
// 第二步、保存分区数据到MySQL表
iter.foreach{item =>// TODO: 使用conn将数据保存到MySQL表中
}
// 第三步、关闭连接:将连接放入到连接池中
if(null != conn) conn.close()
}
}
}
将每批次数据统计结果RDD保存到HDFS文件中,代码如下:
resultDStream.foreachRDD{(rdd, time) =>
// 将BatchTime转换:2019/10/10 14:59:35
val batchTime = FastDateFormat.getInstance("yyyy/MM/dd HH:mm:ss").format(time.milliseconds)
println("-------------------------------------------")
println(s"Time: $batchTime")
println("-------------------------------------------")
// TODO:首先判断每批次结果RDD是否有值,有值才输出, 必须判断,提升性能
if(!rdd.isEmpty()){
// 注意:将Streaming结果数据RDD保存文件中时,最好考虑降低分区数目
rdd.coalesce(1).saveAsTextFile(s"datas/spark/streaming/wc-${time.milliseconds}")
}
}
相关文章:

【Spark分布式内存计算框架——Spark Streaming】5. DStream(上)
3. DStream SparkStreaming模块将流式数据封装的数据结构:DStream(Discretized Stream,离散化数据流,连续不断的数据流),代表持续性的数据流和经过各种Spark算子操作后的结果数据流。 3.1 DStream 是什么…...

Spring系列-9 Async注解使用与原理
背景: 本文作为Spring系列的第九篇,介绍Async注解的使用、注意事项和实现原理,原理部分会结合Spring框架代码进行。 本文可以和Spring系列-8 AOP原理进行比较阅读 1.使用方式 Async一般注解在方法上,用于实现方法的异步…...

Python自动化测试实战篇(6)用PO分层模式及思想,优化unittest+ddt+yaml+request登录接口自动化测试
这些是之前的文章,里面有一些基础的知识点在前面由于前面已经有写过,所以这一篇就不再详细对之前的内容进行描述 Python自动化测试实战篇(1)读取xlsx中账户密码,unittest框架实现通过requests接口post登录网站请求&…...

Linux 进程:父子进程
目录一、了解子进程二、创建子进程1.创建子进程2.区分父子进程三、理解子进程四、创建子进程的意义进程就是运行中的应用程序,如果一个程序较为庞大,我们可以给这个程序创建多个进程,每个进程负责一部分代码的运行。 A进程如果创建了B进程&am…...

Unity 之 实现读取代码写进Word文档功能实现 -- 软著脚本生成工具
Unity 之 实现读取代码写进Word文档功能前言一,实现步骤1.1 逻辑梳理1.2 用到工具二,实现读写文件2.1 读取目录相关2.2 读写文件三,编辑器拓展3.1 编辑器拓展介绍3.2 实现界面可视化四,源码分享4.1 工具目录4.2 完整代码前言 之所…...

Typora图床配置:Typora + PicGo + 阿里云OSS
文章目录一、前景提要二、相关链接三、搭建步骤1. 购买阿里云对象存储OSS2. 对象存储OSS:创建Bucket3. 阿里云:添加OSS访问用户及权限4. 安装Typora5. 配置PicGo方法一:使用PicGo-Core (Command line)方法二:使用PicGo(app)6. 最后…...
二进制搭建以太坊2.0节点-2023最新详细版文档
文章目录 一、配置 JWT 认证二、部署执行节点geth2.1 下载geth二进制文件2.2 geth节点启动三、部署共识节点Prysm3.1 下载Prysm脚本3.2 Prysm容器生成四、检查节点是否同步完成4.1 检查geth执行节点4.2 检查prysm共识节点4.3 geth常用命令五、节点同步详细说明5.1 启动时日志5.…...

如何简化跨网络安全域的文件发送流程,大幅降低IT人员工作量?
为什么要做安全域的隔离? 随着企业数字化转型的逐步深入,企业投入了大量资源进行信息系统建设,信息化程度日益提升。在这一过程中,企业也越来越重视核心数据资产的保护,数据资产的安全防护成为企业面临的重大挑战。 …...

带你深入了解c语言指针后续
前言 🎈个人主页:🎈 :✨✨✨初阶牛✨✨✨ 🐻推荐专栏: 🍔🍟🌯 c语言进阶 🔑个人信条: 🌵知行合一 🍉本篇简介:>:介绍c语言中有关指针更深层的知识. 金句分享: ✨在该…...

借助Intune无感知开启Bitlocker
希望使用 Intune 部署 BitLocker,但不知道从哪里开始?这是人们最开始使用 Intune 时最常见的问题之一。在本博客中,你将了解有关使用 Intune 管理 BitLocker 的所有信息,包括建议的设置、BitLocker CSP 在客户端上的工作方式&…...

零基础该如何转行Python工程师?学习路线是什么?
最近1年的主要学习时间,都投资到了 python 数据分析和数据挖掘上面来了,虽然经验并不是十分丰富,但希望也能把自己的经验分享下,最近也好多朋友给我留言,和我聊天,问我python该如何学习,才能少走…...

Go项目(商品微服务-1)
文章目录简介建表protohandler商品小结简介 商品微服务主要在于表的设计,建哪些表?表之间的关系是怎样的? 主要代码就是 CURD表和字段的设计是一个比较有挑战性的工作,比较难说清楚,也需要经验的积累,这里…...

机器学习——集成学习
引言 集成学习:让机器学习效果更好,单个不行,群殴走起。 分类 1. Bagging:训练多个分类器取平均(m代表树的个数)。 2.Boosting(提升算法):从弱学习器开始加,通过加权来进行训练。…...

VS编译系统 实用调试技巧
目录什么是bug?调试是什么?有多重要?debug和release的介绍windows环境调试介绍、一些调试实例如何写出(易于调试)的代码编程常见的错误什么是bug?其实bug在英文翻译中有表示臭虫的含义,因为第一次被发现的导致计算机…...

【华为OD机试模拟题】用 C++ 实现 - GPU 调度(2023.Q1)
最近更新的博客 【华为OD机试模拟题】用 C++ 实现 - 去重求和(2023.Q1) 文章目录 最近更新的博客使用说明GPU 调度题目输入输出示例一输入输出说明示例二输入输出说明Code使用说明 参加华为od机试,一定要注意不要完全背诵代码,需要理解之后模仿写出,通过率才会高。...
腾讯前端必会react面试题合集
React-Router的路由有几种模式? React-Router 支持使用 hash(对应 HashRouter)和 browser(对应 BrowserRouter) 两种路由规则, react-router-dom 提供了 BrowserRouter 和 HashRouter 两个组件来实现应用的…...

Linux搭建SVN服务器,并内网穿透实现公网远程访问
文章目录1. Ubuntu安装SVN服务2. 修改配置文件2.1 修改svnserve.conf文件2.2 修改passwd文件2.3 修改authz文件3. 启动svn服务4. 内网穿透4.1 安装cpolar内网穿透4.2 创建隧道映射本地端口5. 测试公网访问6. 配置固定公网TCP端口地址6.1 保留一个固定的公网TCP端口地址6.2 配置…...

C++STL之list的模拟实现
目录 一.list准备 二. iterator迭代器 1._list_iterator 2.begin()、end() 3.const_begin()、const_end() 4.!&& 5. && -- 6.operator* 7.operator-> 三.Modify(修改) 1.insert() 2.erase() 3.push_back() && push_front() 4.pop_bac…...

为什么硬件性能监控很重要
当今的混合网络环境平衡了分布式网络和现代技术的实施。但它们并不缺少一个核心组件:服务器。保持网络正常运行时间归结为监控和管理导致网络停机的因素。极有可能导致性能异常的此类因素之一是硬件。使用硬件监控器监控网络硬件已成为一项关键需求。 硬件监视器是…...
HTTP缓存
HTTP缓存HTTP缓存引发的一个问题HTTP缓存的作用HTTP缓存的分类强制缓存协商缓存(解决强缓存下资源不更新问题)缓存策略HTTP缓存引发的一个问题 有一次在开发移动端H5项目,UI提了几个UI问题,经过样式调试,android上没有…...
浅谈 React Hooks
React Hooks 是 React 16.8 引入的一组 API,用于在函数组件中使用 state 和其他 React 特性(例如生命周期方法、context 等)。Hooks 通过简洁的函数接口,解决了状态与 UI 的高度解耦,通过函数式编程范式实现更灵活 Rea…...

【JavaEE】-- HTTP
1. HTTP是什么? HTTP(全称为"超文本传输协议")是一种应用非常广泛的应用层协议,HTTP是基于TCP协议的一种应用层协议。 应用层协议:是计算机网络协议栈中最高层的协议,它定义了运行在不同主机上…...
Java线上CPU飙高问题排查全指南
一、引言 在Java应用的线上运行环境中,CPU飙高是一个常见且棘手的性能问题。当系统出现CPU飙高时,通常会导致应用响应缓慢,甚至服务不可用,严重影响用户体验和业务运行。因此,掌握一套科学有效的CPU飙高问题排查方法&…...
Python Einops库:深度学习中的张量操作革命
Einops(爱因斯坦操作库)就像给张量操作戴上了一副"语义眼镜"——让你用人类能理解的方式告诉计算机如何操作多维数组。这个基于爱因斯坦求和约定的库,用类似自然语言的表达式替代了晦涩的API调用,彻底改变了深度学习工程…...

Golang——9、反射和文件操作
反射和文件操作 1、反射1.1、reflect.TypeOf()获取任意值的类型对象1.2、reflect.ValueOf()1.3、结构体反射 2、文件操作2.1、os.Open()打开文件2.2、方式一:使用Read()读取文件2.3、方式二:bufio读取文件2.4、方式三:os.ReadFile读取2.5、写…...
深入浅出Diffusion模型:从原理到实践的全方位教程
I. 引言:生成式AI的黎明 – Diffusion模型是什么? 近年来,生成式人工智能(Generative AI)领域取得了爆炸性的进展,模型能够根据简单的文本提示创作出逼真的图像、连贯的文本,乃至更多令人惊叹的…...

MySQL的pymysql操作
本章是MySQL的最后一章,MySQL到此完结,下一站Hadoop!!! 这章很简单,完整代码在最后,详细讲解之前python课程里面也有,感兴趣的可以往前找一下 一、查询操作 我们需要打开pycharm …...

《Docker》架构
文章目录 架构模式单机架构应用数据分离架构应用服务器集群架构读写分离/主从分离架构冷热分离架构垂直分库架构微服务架构容器编排架构什么是容器,docker,镜像,k8s 架构模式 单机架构 单机架构其实就是应用服务器和单机服务器都部署在同一…...
【FTP】ftp文件传输会丢包吗?批量几百个文件传输,有一些文件没有传输完整,如何解决?
FTP(File Transfer Protocol)本身是一个基于 TCP 的协议,理论上不会丢包。但 FTP 文件传输过程中仍可能出现文件不完整、丢失或损坏的情况,主要原因包括: ✅ 一、FTP传输可能“丢包”或文件不完整的原因 原因描述网络…...
2025年低延迟业务DDoS防护全攻略:高可用架构与实战方案
一、延迟敏感行业面临的DDoS攻击新挑战 2025年,金融交易、实时竞技游戏、工业物联网等低延迟业务成为DDoS攻击的首要目标。攻击呈现三大特征: AI驱动的自适应攻击:攻击流量模拟真实用户行为,差异率低至0.5%,传统规则引…...