leetcode 684. 冗余连接
树可以看成是一个连通且 无环 的 无向 图。
给定往一棵 n 个节点 (节点值 1~n) 的树中添加一条边后的图。添加的边的两个顶点包含在 1 到 n 中间,且这条附加的边不属于树中已存在的边。图的信息记录于长度为 n 的二维数组 edges ,edges[i] = [ai, bi] 表示图中在 ai 和 bi 之间存在一条边。
请找出一条可以删去的边,删除后可使得剩余部分是一个有着 n 个节点的树。如果有多个答案,则返回数组 edges 中最后出现的那个。
示例 1:

输入: edges = [[1,2], [1,3], [2,3]]
输出: [2,3]
示例 2:

输入: edges = [[1,2], [2,3], [3,4], [1,4], [1,5]]
输出: [1,4]
提示:
n == edges.length
3 <= n <= 1000
edges[i].length == 2
1 <= ai < bi <= edges.length
ai != bi
edges 中无重复元素
给定的图是连通的
题目链接:leetcode 684
思路,可以采用并查集实现,记录每个节点的对用的最终 parent 节点,加入一条边为 (a, b), 则赋值 a 的 parent 节点为 b 的 parent 节点, 如果一条边的 parent 对应节点相同,那么说明这俩节点已经在 图中了。
class Solution:def getParent(self, parent, key):if parent[key] != key:return self.getParent(parent, parent[key])return keydef union(self, parent, key1, key2):parent[self.getParent(parent, key1)] = self.getParent(parent, key2)def findRedundantConnection(self, edges: List[List[int]]) -> List[int]:parent = [i for i in range(len(edges)+1)]for x in edges:node1, node2 = x if self.getParent(parent, node1) == self.getParent(parent, node2):return xelse:self.union(parent, node1, node2)
方法二,直接暴力计算
class Solution:def findRedundantConnection(self, edges: List[List[int]]) -> List[int]:node, visited = set(), set()for x in edges:node.add(x[0])node.add(x[1]) current = set()visited.add(edges[0][0])visited.add(edges[0][1])vis = [0 for i in range(len(edges))]vis[0] = 1res = []for i in range(len(node)):## 每次循环只加一个顶点进去,最后的肯定是答案for j in range(len(edges)):if vis[j] == 0:x = edges[j]if x[0] in visited and x[1] in visited:vis[j] = 1res.append(x)breakelif x[0] in visited:vis[j] = 1visited.add(x[1])breakelif x[1] in visited:vis[j] = 1visited.add(x[0])breakif len(res) > 0:return res[-1]return res
相关文章:
leetcode 684. 冗余连接
树可以看成是一个连通且 无环 的 无向 图。 给定往一棵 n 个节点 (节点值 1~n) 的树中添加一条边后的图。添加的边的两个顶点包含在 1 到 n 中间,且这条附加的边不属于树中已存在的边。图的信息记录于长度为 n 的二维数组 edges ,edges[i] …...
yolov8模型训练、目标跟踪
一、准备条件 1.下载yolov8 https://github.com/ultralytics/ultralytics2.安装python https://www.python.org/ftp/python/3.8.0/python-3.8.0-amd64.exe3.安装依赖 进入ultralytics-main,执行: pip install -r requirements.txt pip install -U ul…...
Flink SQL Regular Join 、Interval Join、Temporal Join、Lookup Join 详解
Flink ⽀持⾮常多的数据 Join ⽅式,主要包括以下三种: 动态表(流)与动态表(流)的 Join动态表(流)与外部维表(⽐如 Redis)的 Join动态表字段的列转⾏…...
如何在搜索引擎中应用AI大语言模型,提高企业生产力?
人工智能尤其是大型语言模型的应用,重塑了我们与信息交互的方式,也为企业带来了重大的变革。将基于大模型的检索增强生成(RAG)集成到业务实践中,不仅是一种趋势,更是一种必要。它有助于实现数据驱动型决策&…...
实验七 组合器模式的应用
实验目的 1)掌握组合器模式(composite)的特点 2 分析具体问题,使用组合器模式进行设计。 实验内容和要求 在例3.3的设计中,添加一个空军大队( Wing)类,该类与Squadron、Group类是平行的,因此应该继承了AirU…...
Springboot实现人脸识别与WebSocket长连接的实现
0.什么是WebSocket,由于普通的请求是间断式发送的,如果要同一时间发生大量的请求,必然导致响应速度慢(因为根据tcp协议要经过三层握手,如果不持续发送,就会导致n多次握手,关闭连接,打开连接) 1.业务需求: 由于我需要使用java来处理视频的问题,视频其实就是图片,相当于每张图片…...
智能安全帽功能-EIS智能防抖摄像头4G定位视频语音气体检测
智能安全帽是一种集成多种智能功能的产品,例如实时定位、语音对讲、健康监测和AI智能预警等。这些丰富的功能能够更好地帮助工人开展工作,并提升安全保障水平。智能安全帽在各个行业中的应用越来越广泛。尤其在工程建设领域,项目管理和工作安…...
TEMU跨境平台珠宝首饰RSL报告如何办理?
首饰或者产品TEMU拼多多跨境平台要求的RSL报告如何办理? 珠宝首饰上架前必须进行RSL Report(欧盟禁限用化学物质检测报告) 随着人们对珠宝首饰的要求越来越高,为了确保珠宝首饰的安全性,欧盟REACH法规规定,…...
51单片机的篮球计分器液晶LCD1602显示( proteus仿真+程序+原理图+PCB+设计报告+讲解视频)
51单片机的篮球计分器液晶LCD1602显示 📑1.主要功能:📑讲解视频:📑2.仿真📑3. 程序代码📑4. 原理图📑5. PCB图📑6. 设计报告📑7. 设计资料内容清单&&…...
【NI-DAQmx入门】NI-DAQmx之Python
NI-DAQmx Python GitHub资源: NI-DAQmx Python 文档说明:NI-DAQmx Python Documentation — NI-DAQmx Python API 0.9 documentation nidaqmx支持 CPython 3.7和 PyPy3,需要注意的是多支持USB DAQ和PCI DAQ,cDAQ需要指定…...
YoloV8目标检测与实例分割——目标检测onnx模型推理
一、模型转换 1.onnxruntime ONNX Runtime(ONNX Runtime或ORT)是一个开源的高性能推理引擎,用于部署和运行机器学习模型。它的设计目标是优化执行使用Open Neural Network Exchange(ONNX)格式定义的模型,…...
pcigo图床插件的简单开发
1.前言: 如果想写一个图床并且投入使用,那么,接入picgo一定是一个不错的选择。picgo有着windows,mac,linux等多个客户端版本。实用且方便。 2. 开发的准备: 2.0. 需要安装一个node node这里我就不详细说…...
Find My手机保护壳|苹果Find My与手机保护壳结合,智能防丢,全球定位
随着科技水平的快速发展,科技美容这一行业做为新型产业新生而出。时尚IT品牌随着市场的多元化发展。针对手机品牌和功能的增加而呈多样化,将手机保护壳按质地分有PC壳,皮革 ,硅胶,布料,硬塑,皮套…...
encode和decode的区别
字节序列和字符串是Python中两种不同的数据类型,它们的主要区别在于表示和处理方式! 字节序列(Bytes): 字节序列是一种二进制数据类型,它由一系列字节组成。字节是计算机存储信息的基本单位,每…...
建设项目管理中的 5 大预算挑战
为建设项目管理制定可靠、准确的预算是一项艰巨的任务,对于中小型建筑企业来说尤其如此。预算必须精确,同时还要考虑到每项工作的独特性和复杂性。 一项建筑行业相关调查统计了参与施工预算流程的人员所面临的最大挑战,分别是时间、预算、不…...
vue2 集成 - 超图-SuperMap iClient3D for WebGL
1:下载SuperMap iClient3D for WebGL SuperMap iClient3D for WebGL产品包 打开资源目录如下 2:格式化项目中所用的依赖包 开发指南 从超图官网下载SuperMap iClient3D 11i (2023) SP1 for WebGL_CN.zip解压后,将Build目录下的SuperMap3D复制到项目中 \public\static…...
FPGA设计过程中有关数据之间的并串转化
1.原理 并串转化是指的是完成串行传输和并行传输两种传输方式之间的转换的技术,通过移位寄存器可以实现串并转换。 串转并,将数据移位保存在寄存器中,再将寄存器的数值同时输出; 并转串,将数据先进行移位࿰…...
hologres基础知识一文全
1 功能特性 1.1多场景查询分析 Hologres支持行存、列存、行列共存等多种存储模式和索引类型,同时满足简单查询、复杂查询、即席查询等多样化的分析查询需求。Hologres使用大规模并行处理架构,分布式处理SQL,提高资源利用率,实现海量数据极速分析。 亚秒级交互式分析 Holo…...
阿里云oss迁移到AWS S3
这里写自定义目录标题 0.项目背景1.rclone 方式2.rsync方式3.注意 0.项目背景 公司迁移要求:从阿里云oss到亚马逊s3,数据量大概500G-2T左右。 开启阿里云oss 加速模式,这样能够跨机房和区域加速。 主要采用以下两种方式同步数据,…...
RabbitMQ(高级特性):限流
消费端限流 在rabbitmq中,使用消费端限流必须开启手动签收信息 过MQ可以对请求进行“削峰填谷”,即通过消费端限流的方式限制消息的拉取速度,达到保护消费端的目的。 生产者批量发送消息: Test public void testSendBatch() {…...
React 第五十五节 Router 中 useAsyncError的使用详解
前言 useAsyncError 是 React Router v6.4 引入的一个钩子,用于处理异步操作(如数据加载)中的错误。下面我将详细解释其用途并提供代码示例。 一、useAsyncError 用途 处理异步错误:捕获在 loader 或 action 中发生的异步错误替…...
基于大模型的 UI 自动化系统
基于大模型的 UI 自动化系统 下面是一个完整的 Python 系统,利用大模型实现智能 UI 自动化,结合计算机视觉和自然语言处理技术,实现"看屏操作"的能力。 系统架构设计 #mermaid-svg-2gn2GRvh5WCP2ktF {font-family:"trebuchet ms",verdana,arial,sans-…...
利用ngx_stream_return_module构建简易 TCP/UDP 响应网关
一、模块概述 ngx_stream_return_module 提供了一个极简的指令: return <value>;在收到客户端连接后,立即将 <value> 写回并关闭连接。<value> 支持内嵌文本和内置变量(如 $time_iso8601、$remote_addr 等)&a…...
MySQL 隔离级别:脏读、幻读及不可重复读的原理与示例
一、MySQL 隔离级别 MySQL 提供了四种隔离级别,用于控制事务之间的并发访问以及数据的可见性,不同隔离级别对脏读、幻读、不可重复读这几种并发数据问题有着不同的处理方式,具体如下: 隔离级别脏读不可重复读幻读性能特点及锁机制读未提交(READ UNCOMMITTED)允许出现允许…...
新能源汽车智慧充电桩管理方案:新能源充电桩散热问题及消防安全监管方案
随着新能源汽车的快速普及,充电桩作为核心配套设施,其安全性与可靠性备受关注。然而,在高温、高负荷运行环境下,充电桩的散热问题与消防安全隐患日益凸显,成为制约行业发展的关键瓶颈。 如何通过智慧化管理手段优化散…...
【HTML-16】深入理解HTML中的块元素与行内元素
HTML元素根据其显示特性可以分为两大类:块元素(Block-level Elements)和行内元素(Inline Elements)。理解这两者的区别对于构建良好的网页布局至关重要。本文将全面解析这两种元素的特性、区别以及实际应用场景。 1. 块元素(Block-level Elements) 1.1 基本特性 …...
AspectJ 在 Android 中的完整使用指南
一、环境配置(Gradle 7.0 适配) 1. 项目级 build.gradle // 注意:沪江插件已停更,推荐官方兼容方案 buildscript {dependencies {classpath org.aspectj:aspectjtools:1.9.9.1 // AspectJ 工具} } 2. 模块级 build.gradle plu…...
听写流程自动化实践,轻量级教育辅助
随着智能教育工具的发展,越来越多的传统学习方式正在被数字化、自动化所优化。听写作为语文、英语等学科中重要的基础训练形式,也迎来了更高效的解决方案。 这是一款轻量但功能强大的听写辅助工具。它是基于本地词库与可选在线语音引擎构建,…...
Spring是如何解决Bean的循环依赖:三级缓存机制
1、什么是 Bean 的循环依赖 在 Spring框架中,Bean 的循环依赖是指多个 Bean 之间互相持有对方引用,形成闭环依赖关系的现象。 多个 Bean 的依赖关系构成环形链路,例如: 双向依赖:Bean A 依赖 Bean B,同时 Bean B 也依赖 Bean A(A↔B)。链条循环: Bean A → Bean…...
Python基于历史模拟方法实现投资组合风险管理的VaR与ES模型项目实战
说明:这是一个机器学习实战项目(附带数据代码文档),如需数据代码文档可以直接到文章最后关注获取。 1.项目背景 在金融市场日益复杂和波动加剧的背景下,风险管理成为金融机构和个人投资者关注的核心议题之一。VaR&…...
