当前位置: 首页 > news >正文

NVMe FDP会被广泛使用吗?

图片

文章开头,我们需要先了解固态硬盘的读写机制。我们知道,固态硬盘的存储单元是由闪存颗粒组成的,无法实现物理性的数据覆盖,只能擦除然后写入,重复这一过程。因而,我们可以想象得到,在实际读写过程中,数据的读写势必会在闪存颗粒上进行多次的擦除写入,特别是当某些区块已经完全被塞满的情况下。

这些多次的操作,增加的写入数量和原始需要写入的数量的比值,就是所谓的写入放大。所以说,写入放大数值高,会损耗固态硬盘寿命。(固态硬盘闪存颗粒有着额定的P/E值,即最大的读写次数,写入放大高,P/E损耗快,寿命低。)在QLC介质中,WAF的影响更加致命。

图片

举个例子,最坏情况下的,假如我要写入一个4KB的数据Z覆盖A,并恰好目标块没有空余的页区,需要进行GC回收。这个时候就需要把B、C、D、E、F五分数据都搬走,然后擦除整个数据块,擦除完成后再整体写入6个数据页。这个整个过程,Host虽然只写了4KB的数据,但实际过程中,由于GC的问题,NAND最终写入了24KB。那么写放大WAF=24KB/4KB=6.

图片


影响WAF的因素有很多:

  • SSD FTL算法的设计会影响写入放大的大小

  • Wear Leveling,WL磨损均衡:这一机制主要是通过均衡所有的闪存颗粒,从而延长整体的使用寿命,然而依旧是增加整体的写放大

  • Over-Provisioning,OP冗余空间:也会影响NAND写入的比例,最终影响写放大

  • Garbage Collection,GC垃圾回收:比如上面的例子,就是GC垃圾回收搬迁数据,擦除数据块后写入带来了整体写放大提升。

  • 业务读写的数据模型:随机写和顺序写对NAND的写入比例有非常大的影响,直接影响写放大的系数

  • 系统层的TRIM操作:会影响invalid无效数据是否在GC过程中搬迁,对写放大影响也有重要的作用。

写放大WAF是NAND-based SSD寿命消耗的关键参数,WAF越大,寿命消耗越快,越接近1,则寿命消耗越慢,也是最理想的情况。

扩展阅读:SSD写放大的优化策略要统一标准了吗?

NVME FDP(Flexible Data Placement)的出现,就是通过灵活的数据放置使主机服务器能够更好地控制数据在 SSD 中的位置。目标是减少写入放大以提高性能。谷歌和Meta向NVME协议组织提交了Flexible Direct Placement TP4146提案,小编在nvme spec 2.0c还没查到,根据最新消息,预计在NVME spec 2.5正式合入

图片

通过示意图,来看看FDP的作用。如下图,来自应用程序 A、B 和 C 的混合数据被写入介质中可用的“超级块”。然后,应用程序 A的数据被删除,删除后会触发盘内的GC垃圾回收。完成后,将测量两个模型的写放大 WAF。

图片

图片

  • 在传统SSD中,每个应用写的数据是散乱分布不同的Die/Block,需要盘预留空间OP完成垃圾回收数据搬迁,垃圾回收过程中,还有可能会影响前端IO性能。

  • 在FDP SSD中,不同的应用程序写入了特定的物理空间,即使某个程序的数据删除,可以针对指定的物理空间执行擦除,减少了不必要的垃圾回收,降低了写放大,同时也避免了对前端IO的影响。

Meta在跟韩国的一家SSD控制器厂商FADU合作中,FDP的功能已被验证可以有效降低写放大,减少了设备磨损,并提高了性能和 QoS。

图片

上图中数据显示:

  • 蓝色线是64K随机写,随着盘运行时间的增加,写放大也会不断增加,最后WAF超过3.

  • 黄色线是通过软件优化的方式调整数据落盘的方式“Log Structured 8 Writers 64KB”,写放大突增到2-2.4,之后保持正常波动,不再上升。

  • 红色线是“Log Structured 8 Writers 64KB with FDP”,在黄色线的基础上,打开FDP,写放大接近1.

图片

如上图,因为写放大的原因,对性能也产生了很大的影响。写放大的变化趋势和性能的变化趋势,基本成反比

此外,谷歌也在大力推进FDP的落地。根据谷歌公布的数据中心案例数据,基于4K随机写+OP 28%,在使能FDP功能下,写放大从2.5下降到1.25.

图片

谷歌这个案例可以看到FDP带给数据中心的好处有很多:

  • 节省OP空间,可以释放更多的存储容量,节省18%的成本。

  • 写放大的降低,也会提升盘的使用寿命,让SSD可以使用更长的时间,这部分也会有35%的成本节省。

  • 写放大降低后,也相应可以提升盘的性能。同样使能更多盘容量空间。

支持 FDP 的系统架构的前景,其中 WAF ~1 是新常态,应该足以引起任何超大规模运营商的注意。此外,FDP非常容易实现。它与旧主机向后兼容,因此无需升级基础架构。设备读取和其他行为不会更改。

扩展阅读:NVMe SSD:ZNS与FDP对决,你选谁?

读到这里,不知道大家是否有一个疑问,既然FDP这么优秀,会被广泛使用吗?

基于目前小编对FDP的认知,FDP在大型数据中心中应用可能会比较顺畅,Meta/Google也都在全力推进,并已经有突破的进展,但是并不会得到市场广泛应用。主要原因是FDP的实现,是需要对应用负载有清晰的了解,并有一定的软件开发适配。这部分开发适配的代价与使能FDP的收益,估计只有大规模数据中心可以最大化的平衡。

相关文章:

NVMe FDP会被广泛使用吗?

文章开头,我们需要先了解固态硬盘的读写机制。我们知道,固态硬盘的存储单元是由闪存颗粒组成的,无法实现物理性的数据覆盖,只能擦除然后写入,重复这一过程。因而,我们可以想象得到,在实际读写过…...

[黑马程序员Pandas教程]——Pandas数据结构

目录: 学习目标认识Pandas中的数据结构和数据类型Series对象通过numpy.ndarray数组来创建通过list列表来创建使用字典或元组创建s对象在notebook中不写printSeries对象常用API布尔值列表获取Series对象中部分数据Series对象的运算DataFrame对象创建df对象DataFrame…...

AI 绘画 | Stable Diffusion 提示词

Prompts提示词简介 在Stable Diffusion中,Prompts是控制模型生成图像的关键输入参数。它们是一种文本提示,告诉模型应该生成什么样的图像。 Prompts可以是任何文本输入,包括描述图像的文本,如“一只橘色的短毛猫,坐在…...

tomcat默认最大线程数、等待队列长度、连接超时时间

tomcat默认最大线程数、等待队列长度、连接超时时间 tomcat的默认最大线程数是200,默认核心线程数(最小空闲线程数)是10。 在核心线程数满了之后,会直接启用最大线程数(和JDK线程池不一样,JDK线程池先使用工作队列再使用最大线程…...

本地部署 CogVLM

本地部署 CogVLM CogVLM 是什么CogVLM Github 地址部署 CogVLM启动 CogVLM CogVLM 是什么 CogVLM 是一个强大的开源视觉语言模型(VLM)。CogVLM-17B 拥有 100 亿视觉参数和 70 亿语言参数。 CogVLM-17B 在 10 个经典跨模态基准测试上取得了 SOTA 性能&am…...

bff层解决了什么痛点

bff层 -- 服务于前端的后端 什么是bff? Backend For Frontend(服务于前端的后端),也就是服务器设计API的时候会考虑前端的使用,并在服务端直接进行业务逻辑的处理,又称为用户体验适配器。BFF只是一种逻辑…...

面试经典150题——Day33

文章目录 一、题目二、题解 一、题目 76. Minimum Window Substring Given two strings s and t of lengths m and n respectively, return the minimum window substring of s such that every character in t (including duplicates) is included in the window. If there …...

再谈Android重要组件——Handler(Native篇)

前言 最近工作比较忙,没怎么记录东西了。Android的Handler重要性不必赘述,之前也写过几篇关于hanlder的文章了: Handler有多深?连环二十七问Android多线程:深入分析 Handler机制源码(二) And…...

Javaweb之javascript的详细解析

JavaScript html完成了架子,css做了美化,但是网页是死的,我们需要给他注入灵魂,所以接下来我们需要学习JavaScript,这门语言会让我们的页面能够和用户进行交互。 1.1 介绍 通过代码/js效果演示提供资料进行效果演示&…...

Linux常用命令——cd命令

在线Linux命令查询工具 cd 切换用户当前工作目录 补充说明 cd命令用来切换工作目录至dirname。 其中dirName表示法可为绝对路径或相对路径。若目录名称省略,则变换至使用者的home directory(也就是刚login时所在的目录)。另外,~也表示为home directo…...

VHDL基础知识笔记(1)

1.实体:其电路意义相当于器件,它相当于电路原理图上的元器件符号。它给出了器件的输入输出引脚。实体又被称为模块。 2.结构体:这个部分会给出实体(或者说模块)的具体实现,指定输入和输出的行为。结构体的…...

volatile-日常使用场景

6.4 如何正确使用volatile 单一赋值可以,但是含复合运算赋值不可以(i之类的) volatile int a 10; volatile boolean flag true; 状态标志,判断业务是否结束 作为一个布尔状态标志,用于指示发生了一个重要的一次…...

策略模式在数据接收和发送场景的应用

在本篇文章中,我们介绍了策略模式,并在数据接收和发送场景中使用了策略模式。 背景 在最近项目中,需要与外部系统进行数据交互,刚开始交互的系统较为单一,刚开始设计方案时打算使用了if else 进行判断: if(…...

学习LevelDB架构的检索技术

目录 一、LevelDB介绍 二、LevelDB优化检索系统关键点分析 三、读写分离设计和内存数据管理 (一)内存数据管理 跳表代替B树 内存数据分为两块:MemTable(可读可写) Immutable MemTable(只读&#xff0…...

Docker Swarm实现容器的复制均衡及动态管理:详细过程版

Swarm简介 Swarm是一套较为简单的工具,用以管理Docker集群,使得Docker集群暴露给用户时相当于一个虚拟的整体。Swarm使用标准的Docker API接口作为其前端访问入口,换言之,各种形式的Docker Client(dockerclient in go, docker_py…...

Proteus仿真--1602LCD显示仿手机键盘按键字符(仿真文件+程序)

本文主要介绍基于51单片机的1602LCD显示仿手机键盘按键字符(完整仿真源文件及代码见文末链接) 仿真图如下 其中左下角12个按键模拟仿真手机键盘,使用方法同手机键一样,长按自动跳动切换键值,松手后确认选择&#xff…...

Rust语言和curl库编写程序

这是一个使用Rust语言和curl库编写的爬虫程序&#xff0c;用于爬取视频。 use std::env; use std::net::TcpStream; use std::io::{BufReader, BufWriter}; ​ fn main() {// 获取命令行参数let args: Vec<String> env::args().collect();let proxy_host args[1].clon…...

FSDiffReg:心脏图像的特征和分数扩散引导无监督形变图像配准

论文标题&#xff1a; FSDiffReg: Feature-wise and Score-wise Diffusion-guided Unsupervised Deformable Image Registration for Cardiac Images 翻译&#xff1a; FSDiffReg&#xff1a;心脏图像的特征和分数扩散引导无监督形变图像配准 摘要 无监督可变形图像配准是医学…...

音视频技术开发周刊 | 318

每周一期&#xff0c;纵览音视频技术领域的干货。 新闻投稿&#xff1a;contributelivevideostack.com。 日程揭晓&#xff01;速览深圳站大会专题议程详解 LiveVideoStackCon 2023 音视频技术大会深圳站&#xff0c;保持着往届强大的讲师阵容以及高水准的演讲质量。两天的参会…...

asp.net docker-compose添加sql server

打开docker-compose.yml 添加 sqldata:image: mysql:8.1.0 打开docker-compose.override.yml 添加 sqldata:environment:- MYSQL_ROOT_PASSWORDPasswordports:- "8080:8080"volumes:- killsb-one-sqldata:/etc/mysql/conf.d 在docker里面就有了sql server容器镜像…...

uniapp 微信小程序 uni-file-picker上传图片报错 chooseAndUploadFile

这个问题真的很搞&#xff0c; 原因是微信开发者工具更新了&#xff0c;导致图片上传问题。 解决方法&#xff1a; 将微信开发者工具的基础库改为2.33.0一下即可。 在微信开发者工具详情 - 本地设置中&#xff08;记得点击‘推送’按钮&#xff09;&#xff1a;...

《向量数据库指南》——用 Milvus Cloud和 NVIDIA Merlin 搭建高效推荐系统结论

如何搭建一个高效的推荐系统? 简单来说,现代推荐系统由训练/推理流水线(pipeline)组成,涉及数据获取、数据预处理、模型训练和调整检索、过滤、排名和评分相关的超参数等多个阶段。走遍这些流程之后,推荐系统能够给出高度个性化的推荐结果,从而提升产品的用户体验。 为…...

致:CSGO游戏搬砖人的一封信

最近大家还在坚持操作CSGO游戏搬砖项目不&#xff1f; 这个项目虽是稳赚项目&#xff0c;但也有行情好和行情不好的时候&#xff0c;平台的大中小各种活动的举办&#xff0c;都会对我们的项目造成一定影响。行情的上下波动势必然会影响卡价的波动&#xff0c;影响选品的快慢&a…...

MuLogin浏览器如何在一台设备上安全登录和管理多个LinkedIn账户?

一、LinkedIn多个账户的用处 LinkedIn作为世界上最大的专业人士社交平台&#xff0c;具有许多有用的功能&#xff0c;对于个人和企业来说都非常重要。以下是多个LinkedIn账户的一些典型用途&#xff1a; 1. 分行业账户&#xff1a;如果您在不同的行业从事职业活动&#xff0c…...

STM32_project:led_beep

代码&#xff1a; 主要部分&#xff1a; #include "stm32f10x.h" // Device header #include "delay.h"// 给蜂鸣器IO口输出低电平&#xff0c;响&#xff0c;高&#xff0c;不向。 //int main (void) //{ // // 开启时钟 // RC…...

[go 反射] 入门

[go 反射] 入门 首先认识go 反射的两大概念&#xff0c;反射之路少不了他们 reflect.Type(接口)获取类型&#xff0c;和列名就找它reflect.Value(结构体)获取值&#xff0c;设置值找它 [tips] 通常是用这两者手底下的方法&#xff0c;reflect.Value结构体中有什么自行查看 …...

【计算机网络】数据链路层-MAC和ARP协议

文章目录 1. 认识以太网2. MAC协议MAC帧的格式MAC地址和IP地址的区别MTU 3. 局域网通信原理碰撞检测和避免 4. ARP协议ARP数据报的格式ARP缓存 1. 认识以太网 网络层解决的是跨网络点到点传输的问题&#xff0c;数据链路层解决的是同一网络中的通信。 数据链路层负责在同一局域…...

本周三商店更新:多款套装下线,四款升级武器带异色皮肤返厂

本周三将迎来26.2版本更新与11商店大更新&#xff0c;版本更新可点击26.2版本更新公告进行查看&#xff0c;这里不一一赘述了&#xff0c;下面大概罗列一下商店更新&#xff0c;有皮肤下架&#xff0c;大家还能趁最后时间入手&#xff0c;最重要的是四款升级武器返厂咯。 危险玩…...

WindowsServer2019-搭建FTP服务器

这里写自定义目录标题 一、基础配置IP地址安装FTP服务检查连通性Windows10连接FTP服务 二、了解和使用FTP具体模块及其配置1、FTP IP地址和域限制2、FTP SSL设置3、FTP当前会话4、FTP防火墙5、FTP目录浏览6、FTP请求筛选7、FTP日志8、FTP身份验证9、FTP授权规则10、FTP消息11、…...

国际阿里云服务器买哪种好用点?

在当时数字化年代&#xff0c;云核算已经成为了企业进行事务运营和数据存储的重要东西。而阿里云作为我国最大的云核算服务供给商&#xff0c;其服务器产品线也适当丰厚。那么&#xff0c;对于用户来说&#xff0c;阿里云服务器买哪种好用点呢&#xff1f;这需求依据个人和企业…...