NVMe FDP会被广泛使用吗?
文章开头,我们需要先了解固态硬盘的读写机制。我们知道,固态硬盘的存储单元是由闪存颗粒组成的,无法实现物理性的数据覆盖,只能擦除然后写入,重复这一过程。因而,我们可以想象得到,在实际读写过程中,数据的读写势必会在闪存颗粒上进行多次的擦除写入,特别是当某些区块已经完全被塞满的情况下。
这些多次的操作,增加的写入数量和原始需要写入的数量的比值,就是所谓的写入放大。所以说,写入放大数值高,会损耗固态硬盘寿命。(固态硬盘闪存颗粒有着额定的P/E值,即最大的读写次数,写入放大高,P/E损耗快,寿命低。)在QLC介质中,WAF的影响更加致命。
举个例子,最坏情况下的,假如我要写入一个4KB的数据Z覆盖A,并恰好目标块没有空余的页区,需要进行GC回收。这个时候就需要把B、C、D、E、F五分数据都搬走,然后擦除整个数据块,擦除完成后再整体写入6个数据页。这个整个过程,Host虽然只写了4KB的数据,但实际过程中,由于GC的问题,NAND最终写入了24KB。那么写放大WAF=24KB/4KB=6.
影响WAF的因素有很多:
-
SSD FTL算法的设计会影响写入放大的大小
-
Wear Leveling,WL磨损均衡:这一机制主要是通过均衡所有的闪存颗粒,从而延长整体的使用寿命,然而依旧是增加整体的写放大
-
Over-Provisioning,OP冗余空间:也会影响NAND写入的比例,最终影响写放大
-
Garbage Collection,GC垃圾回收:比如上面的例子,就是GC垃圾回收搬迁数据,擦除数据块后写入带来了整体写放大提升。
-
业务读写的数据模型:随机写和顺序写对NAND的写入比例有非常大的影响,直接影响写放大的系数
-
系统层的TRIM操作:会影响invalid无效数据是否在GC过程中搬迁,对写放大影响也有重要的作用。
写放大WAF是NAND-based SSD寿命消耗的关键参数,WAF越大,寿命消耗越快,越接近1,则寿命消耗越慢,也是最理想的情况。
扩展阅读:SSD写放大的优化策略要统一标准了吗?
NVME FDP(Flexible Data Placement)的出现,就是通过灵活的数据放置使主机服务器能够更好地控制数据在 SSD 中的位置。目标是减少写入放大以提高性能。谷歌和Meta向NVME协议组织提交了Flexible Direct Placement TP4146提案,小编在nvme spec 2.0c还没查到,根据最新消息,预计在NVME spec 2.5正式合入。
通过示意图,来看看FDP的作用。如下图,来自应用程序 A、B 和 C 的混合数据被写入介质中可用的“超级块”。然后,应用程序 A的数据被删除,删除后会触发盘内的GC垃圾回收。完成后,将测量两个模型的写放大 WAF。
-
在传统SSD中,每个应用写的数据是散乱分布不同的Die/Block,需要盘预留空间OP完成垃圾回收数据搬迁,垃圾回收过程中,还有可能会影响前端IO性能。
-
在FDP SSD中,不同的应用程序写入了特定的物理空间,即使某个程序的数据删除,可以针对指定的物理空间执行擦除,减少了不必要的垃圾回收,降低了写放大,同时也避免了对前端IO的影响。
Meta在跟韩国的一家SSD控制器厂商FADU合作中,FDP的功能已被验证可以有效降低写放大,减少了设备磨损,并提高了性能和 QoS。
上图中数据显示:
-
蓝色线是64K随机写,随着盘运行时间的增加,写放大也会不断增加,最后WAF超过3.
-
黄色线是通过软件优化的方式调整数据落盘的方式“Log Structured 8 Writers 64KB”,写放大突增到2-2.4,之后保持正常波动,不再上升。
-
红色线是“Log Structured 8 Writers 64KB with FDP”,在黄色线的基础上,打开FDP,写放大接近1.
如上图,因为写放大的原因,对性能也产生了很大的影响。写放大的变化趋势和性能的变化趋势,基本成反比。
此外,谷歌也在大力推进FDP的落地。根据谷歌公布的数据中心案例数据,基于4K随机写+OP 28%,在使能FDP功能下,写放大从2.5下降到1.25.
谷歌这个案例可以看到FDP带给数据中心的好处有很多:
-
节省OP空间,可以释放更多的存储容量,节省18%的成本。
-
写放大的降低,也会提升盘的使用寿命,让SSD可以使用更长的时间,这部分也会有35%的成本节省。
-
写放大降低后,也相应可以提升盘的性能。同样使能更多盘容量空间。
支持 FDP 的系统架构的前景,其中 WAF ~1 是新常态,应该足以引起任何超大规模运营商的注意。此外,FDP非常容易实现。它与旧主机向后兼容,因此无需升级基础架构。设备读取和其他行为不会更改。
扩展阅读:NVMe SSD:ZNS与FDP对决,你选谁?
读到这里,不知道大家是否有一个疑问,既然FDP这么优秀,会被广泛使用吗?
基于目前小编对FDP的认知,FDP在大型数据中心中应用可能会比较顺畅,Meta/Google也都在全力推进,并已经有突破的进展,但是并不会得到市场广泛应用。主要原因是FDP的实现,是需要对应用负载有清晰的了解,并有一定的软件开发适配。这部分开发适配的代价与使能FDP的收益,估计只有大规模数据中心可以最大化的平衡。
相关文章:

NVMe FDP会被广泛使用吗?
文章开头,我们需要先了解固态硬盘的读写机制。我们知道,固态硬盘的存储单元是由闪存颗粒组成的,无法实现物理性的数据覆盖,只能擦除然后写入,重复这一过程。因而,我们可以想象得到,在实际读写过…...

[黑马程序员Pandas教程]——Pandas数据结构
目录: 学习目标认识Pandas中的数据结构和数据类型Series对象通过numpy.ndarray数组来创建通过list列表来创建使用字典或元组创建s对象在notebook中不写printSeries对象常用API布尔值列表获取Series对象中部分数据Series对象的运算DataFrame对象创建df对象DataFrame…...

AI 绘画 | Stable Diffusion 提示词
Prompts提示词简介 在Stable Diffusion中,Prompts是控制模型生成图像的关键输入参数。它们是一种文本提示,告诉模型应该生成什么样的图像。 Prompts可以是任何文本输入,包括描述图像的文本,如“一只橘色的短毛猫,坐在…...
tomcat默认最大线程数、等待队列长度、连接超时时间
tomcat默认最大线程数、等待队列长度、连接超时时间 tomcat的默认最大线程数是200,默认核心线程数(最小空闲线程数)是10。 在核心线程数满了之后,会直接启用最大线程数(和JDK线程池不一样,JDK线程池先使用工作队列再使用最大线程…...
本地部署 CogVLM
本地部署 CogVLM CogVLM 是什么CogVLM Github 地址部署 CogVLM启动 CogVLM CogVLM 是什么 CogVLM 是一个强大的开源视觉语言模型(VLM)。CogVLM-17B 拥有 100 亿视觉参数和 70 亿语言参数。 CogVLM-17B 在 10 个经典跨模态基准测试上取得了 SOTA 性能&am…...

bff层解决了什么痛点
bff层 -- 服务于前端的后端 什么是bff? Backend For Frontend(服务于前端的后端),也就是服务器设计API的时候会考虑前端的使用,并在服务端直接进行业务逻辑的处理,又称为用户体验适配器。BFF只是一种逻辑…...
面试经典150题——Day33
文章目录 一、题目二、题解 一、题目 76. Minimum Window Substring Given two strings s and t of lengths m and n respectively, return the minimum window substring of s such that every character in t (including duplicates) is included in the window. If there …...

再谈Android重要组件——Handler(Native篇)
前言 最近工作比较忙,没怎么记录东西了。Android的Handler重要性不必赘述,之前也写过几篇关于hanlder的文章了: Handler有多深?连环二十七问Android多线程:深入分析 Handler机制源码(二) And…...

Javaweb之javascript的详细解析
JavaScript html完成了架子,css做了美化,但是网页是死的,我们需要给他注入灵魂,所以接下来我们需要学习JavaScript,这门语言会让我们的页面能够和用户进行交互。 1.1 介绍 通过代码/js效果演示提供资料进行效果演示&…...

Linux常用命令——cd命令
在线Linux命令查询工具 cd 切换用户当前工作目录 补充说明 cd命令用来切换工作目录至dirname。 其中dirName表示法可为绝对路径或相对路径。若目录名称省略,则变换至使用者的home directory(也就是刚login时所在的目录)。另外,~也表示为home directo…...

VHDL基础知识笔记(1)
1.实体:其电路意义相当于器件,它相当于电路原理图上的元器件符号。它给出了器件的输入输出引脚。实体又被称为模块。 2.结构体:这个部分会给出实体(或者说模块)的具体实现,指定输入和输出的行为。结构体的…...

volatile-日常使用场景
6.4 如何正确使用volatile 单一赋值可以,但是含复合运算赋值不可以(i之类的) volatile int a 10; volatile boolean flag true; 状态标志,判断业务是否结束 作为一个布尔状态标志,用于指示发生了一个重要的一次…...

策略模式在数据接收和发送场景的应用
在本篇文章中,我们介绍了策略模式,并在数据接收和发送场景中使用了策略模式。 背景 在最近项目中,需要与外部系统进行数据交互,刚开始交互的系统较为单一,刚开始设计方案时打算使用了if else 进行判断: if(…...

学习LevelDB架构的检索技术
目录 一、LevelDB介绍 二、LevelDB优化检索系统关键点分析 三、读写分离设计和内存数据管理 (一)内存数据管理 跳表代替B树 内存数据分为两块:MemTable(可读可写) Immutable MemTable(只读࿰…...

Docker Swarm实现容器的复制均衡及动态管理:详细过程版
Swarm简介 Swarm是一套较为简单的工具,用以管理Docker集群,使得Docker集群暴露给用户时相当于一个虚拟的整体。Swarm使用标准的Docker API接口作为其前端访问入口,换言之,各种形式的Docker Client(dockerclient in go, docker_py…...

Proteus仿真--1602LCD显示仿手机键盘按键字符(仿真文件+程序)
本文主要介绍基于51单片机的1602LCD显示仿手机键盘按键字符(完整仿真源文件及代码见文末链接) 仿真图如下 其中左下角12个按键模拟仿真手机键盘,使用方法同手机键一样,长按自动跳动切换键值,松手后确认选择ÿ…...

Rust语言和curl库编写程序
这是一个使用Rust语言和curl库编写的爬虫程序,用于爬取视频。 use std::env; use std::net::TcpStream; use std::io::{BufReader, BufWriter}; fn main() {// 获取命令行参数let args: Vec<String> env::args().collect();let proxy_host args[1].clon…...

FSDiffReg:心脏图像的特征和分数扩散引导无监督形变图像配准
论文标题: FSDiffReg: Feature-wise and Score-wise Diffusion-guided Unsupervised Deformable Image Registration for Cardiac Images 翻译: FSDiffReg:心脏图像的特征和分数扩散引导无监督形变图像配准 摘要 无监督可变形图像配准是医学…...

音视频技术开发周刊 | 318
每周一期,纵览音视频技术领域的干货。 新闻投稿:contributelivevideostack.com。 日程揭晓!速览深圳站大会专题议程详解 LiveVideoStackCon 2023 音视频技术大会深圳站,保持着往届强大的讲师阵容以及高水准的演讲质量。两天的参会…...
asp.net docker-compose添加sql server
打开docker-compose.yml 添加 sqldata:image: mysql:8.1.0 打开docker-compose.override.yml 添加 sqldata:environment:- MYSQL_ROOT_PASSWORDPasswordports:- "8080:8080"volumes:- killsb-one-sqldata:/etc/mysql/conf.d 在docker里面就有了sql server容器镜像…...
可靠性+灵活性:电力载波技术在楼宇自控中的核心价值
可靠性灵活性:电力载波技术在楼宇自控中的核心价值 在智能楼宇的自动化控制中,电力载波技术(PLC)凭借其独特的优势,正成为构建高效、稳定、灵活系统的核心解决方案。它利用现有电力线路传输数据,无需额外布…...

如何在看板中有效管理突发紧急任务
在看板中有效管理突发紧急任务需要:设立专门的紧急任务通道、重新调整任务优先级、保持适度的WIP(Work-in-Progress)弹性、优化任务处理流程、提高团队应对突发情况的敏捷性。其中,设立专门的紧急任务通道尤为重要,这能…...
linux 下常用变更-8
1、删除普通用户 查询用户初始UID和GIDls -l /home/ ###家目录中查看UID cat /etc/group ###此文件查看GID删除用户1.编辑文件 /etc/passwd 找到对应的行,YW343:x:0:0::/home/YW343:/bin/bash 2.将标红的位置修改为用户对应初始UID和GID: YW3…...
论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一)
宇树机器人多姿态起立控制强化学习框架论文解析 论文解读:交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一) 论文解读:交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化…...

使用Spring AI和MCP协议构建图片搜索服务
目录 使用Spring AI和MCP协议构建图片搜索服务 引言 技术栈概览 项目架构设计 架构图 服务端开发 1. 创建Spring Boot项目 2. 实现图片搜索工具 3. 配置传输模式 Stdio模式(本地调用) SSE模式(远程调用) 4. 注册工具提…...

Netty从入门到进阶(二)
二、Netty入门 1. 概述 1.1 Netty是什么 Netty is an asynchronous event-driven network application framework for rapid development of maintainable high performance protocol servers & clients. Netty是一个异步的、基于事件驱动的网络应用框架,用于…...
【LeetCode】3309. 连接二进制表示可形成的最大数值(递归|回溯|位运算)
LeetCode 3309. 连接二进制表示可形成的最大数值(中等) 题目描述解题思路Java代码 题目描述 题目链接:LeetCode 3309. 连接二进制表示可形成的最大数值(中等) 给你一个长度为 3 的整数数组 nums。 现以某种顺序 连接…...

【Linux系统】Linux环境变量:系统配置的隐形指挥官
。# Linux系列 文章目录 前言一、环境变量的概念二、常见的环境变量三、环境变量特点及其相关指令3.1 环境变量的全局性3.2、环境变量的生命周期 四、环境变量的组织方式五、C语言对环境变量的操作5.1 设置环境变量:setenv5.2 删除环境变量:unsetenv5.3 遍历所有环境…...
tomcat入门
1 tomcat 是什么 apache开发的web服务器可以为java web程序提供运行环境tomcat是一款高效,稳定,易于使用的web服务器tomcathttp服务器Servlet服务器 2 tomcat 目录介绍 -bin #存放tomcat的脚本 -conf #存放tomcat的配置文件 ---catalina.policy #to…...
安卓基础(Java 和 Gradle 版本)
1. 设置项目的 JDK 版本 方法1:通过 Project Structure File → Project Structure... (或按 CtrlAltShiftS) 左侧选择 SDK Location 在 Gradle Settings 部分,设置 Gradle JDK 方法2:通过 Settings File → Settings... (或 CtrlAltS)…...