数据分析实战 | 关联规则分析——购物车分析
目录
一、数据及分析对象
二、目的及分析任务
三、方法及工具
四、数据读入
五、数据理解
六、数据预处理
七、生成频繁项集
八、计算关联度
九、可视化
一、数据及分析对象
数据集链接:Online Retail.xlsx
该数据集记录了2010年12月01日至2011年12月09日的541909条在线交际记录,包含以下8个属性:
(1)InvoiceNo:订单编号,由6位整数表示,退货单号由字母“C”开头;
(2)StockCode:产品编号,每个不同的产品由不重复的5位整数表示;
(3)Description:产品描述;
(4)Quantity:产品数量,每笔交易的每件产品的数量;
(5)InvoiceDate:订单日期和时间,表示生成每笔交易的日期和时间;
(6)UnitPrice:单价,每件产品的英镑价格;
(7)CustomerID:顾客编号,每位客户由唯一的5位整数表示;
(8)Country:国家名称,每位客户所在国家/地区的名称。
二、目的及分析任务
理解Apriori算法的具体应用
(1)计算最小支持度为0.07的德国客户购买产品的频繁项集。
(2)计算最小置信度为0.8且提升度不小于2的德国客户购买产品的关联关系。
三、方法及工具
能够实现Aprior算法的Python第三方工具包有mlxtend、kiwi-apriori、apyori、apriori_python、efficient-apriori等,比较常用的是mlxtend、apriori_python、efficient-apriori,本项目采用的是mlxtend包。
四、数据读入
import pandas as pd
from mlxtend.frequent_patterns import apriori
from mlxtend.frequent_patterns import association_rules
df_Retails=pd.read_excel("C:\\Users\\LEGION\\AppData\\Local\\Temp\\360zip$Temp\\360$0\\Online Retail.xlsx")
df_Retails.head()

五、数据理解
调用shape属性查看数据框df_Retails的形状。
df_Retails.shape
![]()
查看列名称
df_Retails.columns
Index(['InvoiceNo', 'StockCode', 'Description', 'Quantity', 'InvoiceDate','UnitPrice', 'CustomerID', 'Country'],dtype='object')
对数据框df_Retails进行探索性分析。
df_Retails.describe()

其中,count、mean、std、min、25%、50%、75%和max的含义分别为个数、均值、标准差、最小值、上四分位数、中位数、下四分位数和最大值。
除了describe()方法,还可以调用info()方法查看样本数据的相关信息概览:
df_Retails.info()

从输出结果可以看出,数据框df_Retails的Description和CustomerID两列有缺失值。
看国家一列:
df_Retails.Country.unique()
array(['United Kingdom', 'France', 'Australia', 'Netherlands', 'Germany','Norway', 'EIRE', 'Switzerland', 'Spain', 'Poland', 'Portugal','Italy', 'Belgium', 'Lithuania', 'Japan', 'Iceland','Channel Islands', 'Denmark', 'Cyprus', 'Sweden', 'Austria','Israel', 'Finland', 'Bahrain', 'Greece', 'Hong Kong', 'Singapore','Lebanon', 'United Arab Emirates', 'Saudi Arabia','Czech Republic', 'Canada', 'Unspecified', 'Brazil', 'USA','European Community', 'Malta', 'RSA'], dtype=object)
df_Retails["Country"].unique()
array(['United Kingdom', 'France', 'Australia', 'Netherlands', 'Germany','Norway', 'EIRE', 'Switzerland', 'Spain', 'Poland', 'Portugal','Italy', 'Belgium', 'Lithuania', 'Japan', 'Iceland','Channel Islands', 'Denmark', 'Cyprus', 'Sweden', 'Austria','Israel', 'Finland', 'Bahrain', 'Greece', 'Hong Kong', 'Singapore','Lebanon', 'United Arab Emirates', 'Saudi Arabia','Czech Republic', 'Canada', 'Unspecified', 'Brazil', 'USA','European Community', 'Malta', 'RSA'], dtype=object)
查看各国家的购物数量:
df_Retails["Country"].value_counts()
United Kingdom 495478 Germany 9495 France 8557 EIRE 8196 Spain 2533 Netherlands 2371 Belgium 2069 Switzerland 2002 Portugal 1519 Australia 1259 Norway 1086 Italy 803 Channel Islands 758 Finland 695 Cyprus 622 Sweden 462 Unspecified 446 Austria 401 Denmark 389 Japan 358 Poland 341 Israel 297 USA 291 Hong Kong 288 Singapore 229 Iceland 182 Canada 151 Greece 146 Malta 127 United Arab Emirates 68 European Community 61 RSA 58 Lebanon 45 Lithuania 35 Brazil 32 Czech Republic 30 Bahrain 19 Saudi Arabia 10 Name: Country, dtype: int64
可以看出,英国的客户购买商品数量最多,为495478条记录,其次是德国的客户,为9495条记录。
查看订单编号(InvoiceNo)一列中是否有重复的值。
df_Retails.duplicated(subset=["InvoiceNo"]).any()
True
订单编号有重复表示同一个订单中有多个同时购买的产品,符合Apriori算法的数据要求。
六、数据预处理
查看数据中是否有缺失值。
df_Retails.isna().sum()
InvoiceNo 0 StockCode 0 Description 1454 Quantity 0 InvoiceDate 0 UnitPrice 0 CustomerID 135080 Country 0 dtype: int64
可以看出,Description的缺失值有1454条,CustomerID的缺失值有135080条。
将商品名称(Description)一列的字符串头尾的空白字符删除:
df_Retails['Description']=df_Retails['Description'].str.strip()
再次查看数据集形状;
df_Retails.shape
(541909, 8)
查看商品名称(Description)一列的缺失值个数:
df_Retails['Description'].isna().sum()
1455
在对商品名称(Description)一列进行空白字符处理后,缺失值增加了一个。去除所有的缺失值:
df_Retails.dropna(axis=0,subset=['Description'],inplace=True)
再次查看数据集形状:
df_Retails.shape
(540454, 8)
检查此时的数据集是否还有缺失值:
df_Retails['Description'].isna().sum()
0
可以看出,数据框df_Retails中商品名称(Description)一列的缺失值已全部删除。
由于退货的订单由字母“C”开头,删除含有C字母的已取消订单:
df_Retails['InvoiceNo']=df_Retails['InvoiceNo'].astype('str')
df_Retails=df_Retails[~df_Retails['InvoiceNo'].str.contains('C')]
df_Retails.shape
(531166, 8)
将数据改为每一行一条记录,并考虑到内存限制以及德国(Germany)的购物数量位居第二,因此在本项目中只计算德国客户购买的商品的频繁项集及关联规则,全部计算则计算量太大。
df_ShoppingCarts=(df_Retails[df_Retails['Country']=="Germany"].groupby(['InvoiceNo','Description'])['Quantity'].sum().unstack().reset_index().fillna(0).set_index('InvoiceNo'))
df_ShoppingCarts.shape
(457, 1695)
df_ShoppingCarts.head()

德国的购物记录共有457条,共包含1695件不同的商品。
查看订单编号(InvoiceNo)一列是否有重复的值:
df_Retails.duplicated(subset=["InvoiceNo"]).any()
True
订单编号有重复表示同一个订单中有多个同时购买的产品,符合Apriori算法的数据要求。由于apriori方法中df参数允许的值为0/1或True/False,在此将这些项在数据框中转换为0/1形式,即转换为模型可接受格式的数据即可进行频繁项集和关联度的计算。
def encode_units(x):if x<=0:return 0if x>=1:return 1df_ShoppingCarts_sets=df_ShoppingCarts.applymap(encode_units)
七、生成频繁项集
mlxtend.frequnet_patterns的apriori()方法可进行频繁项集的计算,将最小支持度设定为0.07:
df_Frequent_Itemsets=apriori(df_ShoppingCarts_sets,min_support=0.07,use_colnames=True)
df_Frequent_Itemsets

查看数据框df_Frequent_Itemsets的形状:
df_Frequent_Itemsets.shape
(39, 2)
可以看出,满足最小支持度0.07的频繁项集有39个。
八、计算关联度
将提升度(lift)作为度量计算关联规则,并设置阈值为1,表示计算具有正相关关系的关联规则。该任务由mlxtend.frequent_patterns的association_rules()方法实现:
df_AssociationRules=association_rules(df_Frequent_Itemsets,metric="lift",min_threshold=1)
df_AssociationRules


从结果可以看出各项关联规则的详细信息。
以第一条关联规则为{6 RIBBONS RUSTIC CHARM}—>{POSTAGE}为例,{6 RIBBONS RUSTIC CHARM}的支持度为0.102845,{POSTAGE}的支持度为0.818381,项集{{6 RIBBONS RUSTIC CHARM,POSTAGE}的支持度为0.091904,客户购买6 RIBBONS RUSTIC CHARM的同时也购买POSTAGE的置信度为0.893617,提升度为1.091933,规则杠杆率(即当6 RIBBONS RUSTIC CHARM和POSTAGE一起出现的次数比预期多)为0.007738,规则确信度(与提升度类似,但用差值表示,确信度越大则6 RIBBONS RUSTIC CHARM和POSTAGE关联关系越强)为1.707221。
查看数据框df_AssocaitionRules的形状:
df_AssociationRules.shape
(34, 10)
可以看出,总共输出了34条关联规则。接着筛选提升度不小于2且置信度不小于0.8的关联规则:
df_A=df_AssociationRules[(df_AssociationRules['lift']>2)&(df_AssociationRules['confidence']>=0.8)]
df_A

由此可知,提升度不小于2且满足最小置信度0.8的强关联规则有两条,分别为:{ROUND SNACK BOXES SET OF 4 FRUITS}—>{ROUND SNACK BOXES SET OF4 WOODLAND}和{POSTAGE, ROUND SNACK BOXES SET OF 4 FRUITS}—>{ROUND SNACK BOXES SET OF4 WOODLAND}。
九、可视化
绘制出提升度不小于1的关联规则的散点图,横坐标设置为支持度,纵坐标为置信度,散点的大小表示提升度。该可视化任务由matplotlib.pyplot的scatter函数实现:
import matplotlib.pyplot as plt#将点的大小放大20倍
plt.scatter(x=df_AssociationRules['support'],y=df_AssociationRules['confidence'],s=df_AssociationRules['lift']*20) plt.show()

相关文章:
数据分析实战 | 关联规则分析——购物车分析
目录 一、数据及分析对象 二、目的及分析任务 三、方法及工具 四、数据读入 五、数据理解 六、数据预处理 七、生成频繁项集 八、计算关联度 九、可视化 一、数据及分析对象 数据集链接:Online Retail.xlsx 该数据集记录了2010年12月01日至2011年12月09日…...
maven 添加 checkstyle 插件约束代码规范
本例示例,是引用 http 链接这种在线 checkstyle.xml 文件的配置方式,如下示例: <properties><maven.checkstyle.plugin.version>3.3.0</maven.checkstyle.plugin.version><!--支持本地绝对路径、本地相对路径、HTTP远程…...
什么是MySQL的执行计划(Explain关键字)?
什么是Explain Explain被称为执行计划,在语句之前增加 explain 关键字,MySQL 会在查询上设置一个标记,模拟MySQL优化器来执行SQL语句,执行查询时,会返回执行计划的信息,并不执行这条SQL。(注意&…...
编码格式科普ASCII unicode utf-8 usc-2 GB2312
1.ASCII(标准版) 可以表示所有英文字符(包括大写和小写)和数字,长度为7bit,最多可以表示0-127 个值,2的7次方个数字。比如比如“a” 对照ASCII码的值为97(十进制)或11000…...
Pycharm中新建一个文件夹下__init__.py文件有什么用
在PyCharm中新建一个文件夹下的__init__.py文件有以下几个作用: 声明文件夹为一个Python包:__init__.py文件的存在告诉Python解释器该文件夹是一个Python包。当你导入该文件夹下的模块时,Python会将其视为一个包而不是普通的文件夹。这允许你…...
OracleBulkCopy c#批量插入oracle数据库的方法
datatable中的数据 存入oracle表中,要求 二者字段名一致,如果不一致,通过这个实现对应: bulkCopy.ColumnMappings.Add("SERVNUMBER", "SN"); 首先要引入Oracle.DataAccess.dll文件(在oracle客户端…...
046_第三代软件开发-虚拟屏幕键盘
第三代软件开发-虚拟屏幕键盘 文章目录 第三代软件开发-虚拟屏幕键盘项目介绍虚拟屏幕键盘 关键字: Qt、 Qml、 虚拟键盘、 qtvirtualkeyboard、 自定义 项目介绍 欢迎来到我们的 QML & C 项目!这个项目结合了 QML(Qt Meta-Object L…...
MySQL主从搭建,实现读写分离(基于docker)
一 主从配置原理 mysql主从配置的流程大体如图: 1)master会将变动记录到二进制日志里面; 2)master有一个I/O线程将二进制日志发送到slave; 3) slave有一个I/O线程把master发送的二进制写入到relay日志里面; 4…...
uni-app android picker选择默认月份
微信小程序选中月份后下次再点开是上次的选中的月份,而编译的android应用只默认当前月份 <picker mode"date" ref"picker" :disabled"disabled" :value"date" fields"month" change"bindDateChange&quo…...
Go 接口-契约介绍
Go 接口-契约介绍 文章目录 Go 接口-契约介绍一、接口基本介绍1.1 接口类型介绍1.2 为什么要使用接口1.3 面向接口编程1.4 接口的定义 二、空接口2.1 空接口的定义2.2 空接口的应用2.2.1 空接口作为函数的参数2.2.2 空接口作为map的值 2.3 接口类型变量2.4 类型断言 三、尽量定…...
变压器试验VR虚拟仿真操作培训提升受训者技能水平
VR电气设备安装模拟仿真实训系统是一种利用虚拟现实技术来模拟电气设备安装过程的培训系统。它能够为学员提供一个真实、安全、高效的学习环境,帮助他们更好地掌握电气设备的安装技能。 华锐视点采用VR虚拟现实技术、MR混合现实技术、虚拟仿真技术、三维建模技术、人…...
Mastering Makefile:模块化编程技巧与经验分享
在Linux项目管理中,Makefile是一个强大的工具,它可以帮助我们自动化编译和测试过程。然而,随着项目的增长,Makefile可能会变得越来越复杂,难以管理。在这篇文章中,我将分享一些模块化编程的技巧和经验&…...
el-input输入校验插件(正则表达式)
使用方法:在main.js文件中注册插件然后直接在<el-input>加入‘v-插件名’ (1)在main.js文件: // 只能输入数字指令 import onlyNumber from /directive/only-number; Vue.use(onlyNumber); (2)在src/directive文件夹中 &a…...
【Matplotlib】plt.plot() X轴横坐标展示完整整数坐标
比如说,我的数据应该是 x轴从2到21的20个整数 y轴对应值 但是直接plot的话x轴显示居然有小数点什么鬼 可以这样改...
左手 Jira,右手 Polarion,驶入互联网和制造业十字路口的新能源汽车
笔者之前一直在互联网公司从事软件研发,创立 Bytebase 之后,才开始接触到各行各业的用户。最近来自汽车行业的客户不少,所以就翻翻相关资料。周末微信收到了一条推送,提到汽车行业的软件研发管理,也由此了解到了 Polar…...
网络安全(黑客)-0基础小白自学
1.网络安全是什么 网络安全可以基于攻击和防御视角来分类,我们经常听到的 “红队”、“渗透测试” 等就是研究攻击技术,而“蓝队”、“安全运营”、“安全运维”则研究防御技术。 2.网络安全市场 一、是市场需求量高; 二、则是发展相对成熟…...
ActiveMQ、RabbitMQ、RocketMQ、Kafka介绍
一、消息中间件的使用场景 消息中间件的使用场景总结就是六个字:解耦、异步、削峰 1.解耦 如果我方系统A要与三方B系统进行数据对接,推送系统人员信息,通常我们会使用接口开发来进行。但是如果运维期间B系统进行了调整,或者推送过…...
unity打AB包,AssetBundle预制体与图集(二)
第二步:加载AB包的资源,用于显示 using System.Collections; using System.Collections.Generic; using System.IO; using UnityEngine; using UnityEngine.Networking; using UnityEngine.U2D; using UnityEngine.UI;public class GameLaunch : MonoBe…...
【网络安全 --- web服务器解析漏洞】IIS,Apache,Nginx中间件常见解析漏洞
一,工具及环境准备 以下都是超详细保姆级安装教程,缺什么安装什么即可(提供镜像工具资源) 1-1 VMware 16.0 安装 【网络安全 --- 工具安装】VMware 16.0 详细安装过程(提供资源)-CSDN博客文章浏览阅读20…...
Python基础——注释、缩进、语法、标识符、关键字
注释 Python中单行注释用#表示,多行注释由3对双引号或单引号包裹:可以使用快捷键CTRLR进行注释 # 我是单行注释"""我是多行注释 """缩进 python使用“缩进”即一行代码前的空白区域确定代码之间的逻辑关系和层次关系。…...
生成xcframework
打包 XCFramework 的方法 XCFramework 是苹果推出的一种多平台二进制分发格式,可以包含多个架构和平台的代码。打包 XCFramework 通常用于分发库或框架。 使用 Xcode 命令行工具打包 通过 xcodebuild 命令可以打包 XCFramework。确保项目已经配置好需要支持的平台…...
深入浅出Asp.Net Core MVC应用开发系列-AspNetCore中的日志记录
ASP.NET Core 是一个跨平台的开源框架,用于在 Windows、macOS 或 Linux 上生成基于云的新式 Web 应用。 ASP.NET Core 中的日志记录 .NET 通过 ILogger API 支持高性能结构化日志记录,以帮助监视应用程序行为和诊断问题。 可以通过配置不同的记录提供程…...
应用升级/灾备测试时使用guarantee 闪回点迅速回退
1.场景 应用要升级,当升级失败时,数据库回退到升级前. 要测试系统,测试完成后,数据库要回退到测试前。 相对于RMAN恢复需要很长时间, 数据库闪回只需要几分钟。 2.技术实现 数据库设置 2个db_recovery参数 创建guarantee闪回点,不需要开启数据库闪回。…...
PPT|230页| 制造集团企业供应链端到端的数字化解决方案:从需求到结算的全链路业务闭环构建
制造业采购供应链管理是企业运营的核心环节,供应链协同管理在供应链上下游企业之间建立紧密的合作关系,通过信息共享、资源整合、业务协同等方式,实现供应链的全面管理和优化,提高供应链的效率和透明度,降低供应链的成…...
高频面试之3Zookeeper
高频面试之3Zookeeper 文章目录 高频面试之3Zookeeper3.1 常用命令3.2 选举机制3.3 Zookeeper符合法则中哪两个?3.4 Zookeeper脑裂3.5 Zookeeper用来干嘛了 3.1 常用命令 ls、get、create、delete、deleteall3.2 选举机制 半数机制(过半机制࿰…...
Golang dig框架与GraphQL的完美结合
将 Go 的 Dig 依赖注入框架与 GraphQL 结合使用,可以显著提升应用程序的可维护性、可测试性以及灵活性。 Dig 是一个强大的依赖注入容器,能够帮助开发者更好地管理复杂的依赖关系,而 GraphQL 则是一种用于 API 的查询语言,能够提…...
高危文件识别的常用算法:原理、应用与企业场景
高危文件识别的常用算法:原理、应用与企业场景 高危文件识别旨在检测可能导致安全威胁的文件,如包含恶意代码、敏感数据或欺诈内容的文档,在企业协同办公环境中(如Teams、Google Workspace)尤为重要。结合大模型技术&…...
3-11单元格区域边界定位(End属性)学习笔记
返回一个Range 对象,只读。该对象代表包含源区域的区域上端下端左端右端的最后一个单元格。等同于按键 End 向上键(End(xlUp))、End向下键(End(xlDown))、End向左键(End(xlToLeft)End向右键(End(xlToRight)) 注意:它移动的位置必须是相连的有内容的单元格…...
用机器学习破解新能源领域的“弃风”难题
音乐发烧友深有体会,玩音乐的本质就是玩电网。火电声音偏暖,水电偏冷,风电偏空旷。至于太阳能发的电,则略显朦胧和单薄。 不知你是否有感觉,近两年家里的音响声音越来越冷,听起来越来越单薄? —…...
【网络安全】开源系统getshell漏洞挖掘
审计过程: 在入口文件admin/index.php中: 用户可以通过m,c,a等参数控制加载的文件和方法,在app/system/entrance.php中存在重点代码: 当M_TYPE system并且M_MODULE include时,会设置常量PATH_OWN_FILE为PATH_APP.M_T…...
