数据标注工具【LabelImg】安装使用 用VOC制作自己的数据集
labelImg的安装
- ⭐️LabelImg简介
- ⭐️LabelImg的安装
- ⭐️labelImg标注数据集
- ⭐️利用VOC制作自己的数据集
⭐️LabelImg简介
Labelimg是一款开源的数据标注工具,标签可用于分类和目标检测,它是用python写的,并使用Qt作为其图形界面,简单好用,它可以标注三种格式。
1 VOC标签格式,保存为xml文件。2 yolo标签格式,保存为txt文件。3 createML标签格式,保存为json格式。
⭐️LabelImg的安装
首先,用conda创建一个新的环境
conda create -n py38 python=3.8
查看已有环境列表:
conda envs list

然后,激活环境py38
conda activate py38

然后在py38这个环境中下载labelImg即可
pip install labelimg -i https://pypi.tuna.tsinghua.edu.cn/simple
然后在py38环境下输入 labelImg即可打开labelImg

打开如图界面:

labelImg的使用

比较常用的快捷键:
画框 W
下一张
⭐️labelImg标注数据集
Open Dir我选择水果数据集进行标注

该数据集一共有五个标签。
为方便标注,选取了一部分各类别的水果至一个文件夹JPEGImages中进行标注。
点击Change save Dir我将标注的数据集存放在路径
标注好的数据集如下,为xml格式:

⭐️利用VOC制作自己的数据集
新建文件夹,并在新建的文件夹下新建Annotations、ImageSets、JPEImages三个文件夹,在ImageSets下新建Main文件夹。

将自己的数据集图片拷贝到JPEGImages目录下。
即:

将数据集label文件拷贝到Annotations目录下。
即:

在主文件夹下新建test.py文件夹,输入以下代码进去运行,将生成四个文件:train.txt,val.txt,test.txt和trainval.txt。
import os
import randomtrainval_percent = 0.8 #val即Validation(验证),即训练集和验证机占全体数据的比例
train_percent = 0.9 #训练集占训练集和验证集总体的比例
xmlfilepath = 'D:\\A_data\\fruits\VOC\\Annotations' #这里是我的绝对路径
txtsavepath = 'D:\\A_data\\fruits\\VOC\\ImageSets\Main' #我的绝对路径 如果使用需要修改
total_xml = os.listdir(xmlfilepath)num = len(total_xml)
list = range(num)
tv = int(num * trainval_percent) # 训练集和验证集总个数
tr = int(tv * train_percent) # 训练集总个数
trainval = random.sample(list, tv)
train = random.sample(trainval, tr)#需要生成以下四个文件,分别是test.txt,train.txt,trainval.txt,val.txt
#分别代表测试集、训练集、训练-验证集、验证集
ftrainval = open('D:\\A_data\\fruits\\VOC\\ImageSets\\Main\\trainval.txt', 'w')
ftest = open('D:\\A_data\\fruits\\VOC\\ImageSets\\Main\\test.txt', 'w')
ftrain = open('D:\\A_data\\fruits\\VOC\\ImageSets\\Main\\train.txt', 'w')
fval = open('D:\\A_data\\fruits\\VOC\\ImageSets\\Main\\val.txt', 'w')for i in list:name = total_xml[i][:-4] + '\n'if i in trainval:ftrainval.write(name)if i in train:ftest.write(name)else:fval.write(name)else:ftrain.write(name)ftrainval.close()
ftrain.close()
fval.close()
ftest.close()
运行结束后,我们可以查看txt文件,我们的数据集已经制作完成。
test数据集:
103
105
109
11
111
115
117
119
125
129
131
135
137
139
143
149
15
151
153
157
161
163
165
167
169
23
25
29
3
31
33
35
37
39
43
45
47
49
5
51
53
55
57
61
63
67
7
71
73
75
77
79
81
85
87
89
9
93
95
97
99
train数据集:
101
107
113
121
123
133
141
147
155
159
17
19
21
41
59
65
83
91
训练验证集:
1
103
105
109
11
111
115
117
119
125
127
129
13
131
135
137
139
143
145
149
15
151
153
157
161
163
165
167
169
171
23
25
27
29
3
31
33
35
37
39
43
45
47
49
5
51
53
55
57
61
63
67
69
7
71
73
75
77
79
81
85
87
89
9
93
95
97
99
验证集:
1
127
13
145
171
27
69
相关文章:
数据标注工具【LabelImg】安装使用 用VOC制作自己的数据集
labelImg的安装 ⭐️LabelImg简介⭐️LabelImg的安装⭐️labelImg标注数据集⭐️利用VOC制作自己的数据集 ⭐️LabelImg简介 Labelimg是一款开源的数据标注工具,标签可用于分类和目标检测,它是用python写的,并使用Qt作为其图形界面…...
Zeus IoT : 基于 SpringBoot 的分布式开源物联网大数据平台
Zeus IoT 是一个集设备数据采集、存储、分析、观测为一体的开源物联网平台,全球首创基于 Zabbix 的物联网分布式数据采集架构,具备超百万级物联网设备的并发监控能力,真正具备工业级性能与稳定性的开源物联网大数据中台。 Zeus IoT 致力于让设…...
面试—如何介绍项目中的多级缓存?
项目中使用的多级缓存也就是 分布式缓存 Redis 本地缓存 Caffeine,那么令 Caffeine 作为一级缓存,Redis 作为二级缓存,在项目中通过记录数据的访问次数,将热点数据放在 本地缓存,将非热点数据放在 Redis缓存 中&#…...
PyTorch入门学习(十七):完整的模型训练套路
目录 一、构建神经网络 二、数据准备 三、损失函数和优化器 四、训练模型 五、保存模型 一、构建神经网络 首先,需要构建一个神经网络模型。在示例代码中,构建了一个名为Tudui的卷积神经网络(CNN)模型。这个模型包括卷积层、…...
《 Hello 算法 》 - 免费开源的数据结构与算法入门教程电子书,包含大量动画、图解,通俗易懂
这本学习算法的电子书应该是我看过这方面最好的书了,代码例子有多种编程语言,JavaScript 也支持。 《 Hello 算法 》,英文名称是 Hello algo,是一本关于编程中数据解构和算法入门的电子书,作者是毕业于上海交通大学的…...
数据库之事务
数据库之事务 事务的特点: ACID 原子性 一致性:数据库的完整性约束,不能被破坏 隔离性 持久性:数据一旦提交,事务的效果将会被永久的保留在数据库中。而且不会被回滚 主从复制 高可用 备份 权限控制 脏读&am…...
NOIP2023模拟12联测33 B. 游戏
NOIP2023模拟12联测33 B. 游戏 文章目录 NOIP2023模拟12联测33 B. 游戏题目大意思路code 题目大意 期望题 思路 二分答案 m i d mid mid ,我们只关注学生是否能够使得被抓的人数 ≤ m i d \le mid ≤mid 那我们就只关心 a > m i d a > mid a>mid 的房…...
代码随想录打卡第六十三天|84.柱状图中最大的矩形
84.柱状图中最大的矩形 题目:给定 n 个非负整数,用来表示柱状图中各个柱子的高度。每个柱子彼此相邻,且宽度为 1 。求在该柱状图中,能够勾勒出来的矩形的最大面积。 提示: 1 < heights.length <105 0 < h…...
python tempfile 模块使用
在Python中,tempfile 模块用于创建临时文件和目录,它们可以用于存储中间处理数据,不需要长期保存。该模块提供了几种不同的类和函数来创建临时文件和目录。 下面是几个常用的 tempfile 使用方法: 临时文件 使用 NamedTemporary…...
【软件测试】接口测试实战详解
最近找到了几个问题,都还比较有代表性。 作为一个初级测试,想学接口测试,但是一点头绪都没有。求教大神指点,有没有好的书或者工具推荐?如何做接口测试呢?接口测试有哪些工具做接口测试的流程一般是怎么样…...
轻量封装WebGPU渲染系统示例<20>- 美化一下元胞自动机之生命游戏(源码)
当前示例源码github地址: https://github.com/vilyLei/voxwebgpu/blob/feature/rendering/src/voxgpu/sample/GameOfLifePretty.ts 系统特性: 1. 用户态与系统态隔离。 2. 高频调用与低频调用隔离。 3. 面向用户的易用性封装。 4. 渲染数据(内外部相关资源)和渲染机制分离…...
Nodejs的安装以及配置(node-v12.16.1-x64.msi)
Nodejs的安装以及配置 1、安装 node-v12.16.1-x64.msi点击安装,注意以下步骤 本文设置nodejs的安装的路径:D:\soft\nodejs 继续点击next,选中Add to PATH ,旁边的英文告诉我们会把 环境变量 给我们配置好 当然也可以只选择 Nod…...
03【保姆级】-GO语言变量和数据类型和相互转换
03【保姆级】-GO语言变量和数据类型 一、变量1.1 变量的定义:1.2 变量的声明、初始化、赋值1.3 变量使用的注意事项 插播-关于fmt.Printf格式打印%的作用二、 变量的数据类型2.1整数的基本类型2.1.1 有符号类型 int8/16/32/642.1.2 无符号类型 int8/16/32/642.1.3 整…...
mermaid学习第一天/更改主题颜色和边框颜色/《需求解释流程图》
mermaid 在线官网: https://mermaid-js.github.io/ 在线学习文件: https://mermaid.js.org/syntax/quadrantChart.html 1、今天主要是想做需求解释的流程图,又不想自己画,就用了,框框不能直接进行全局配置࿰…...
SAP MASS增加PR字段-删除标识
MASS->BUS2105->发现没有找到PR删除标识字段 SAP MASS增加PR字段-删除标识 1.tcode:MASSOBJ 选中BUS2105 点“应用程序表” 点“字段列表” 2.选中一行进行参考 3.修改字段为删除标识 LOEKZ,保存即可。 4.然后MASS操作,批量设置删除标识&…...
【手把手教你】训练YOLOv8分割模型
1.下载文件 在github上下载YOLOV8模型的文件,搜索yolov8,star最多这个就是 2. 准备环境 环境要求python>3.8,PyTorch>1.8,自行安装ptyorch环境即可 2. 制作数据集 制作数据集,需要使用labelme这个包&#…...
物料主数据增强屏幕绘制器DUMP
问题描述 在做完物料主数据增强后,配置和代码传Q,在Q进入增强屏幕绘制器报错。 错误 CALLBACK_REJECTED_BY_WHITELIST RFC callback call rejected by positive list An RFC callback has been prevented due to no corresponding positive list en…...
vue 实现在线预览Excel-LuckyExcel/LuckySheet实现方案
一、准备工作 1. npm安装 luckyexcel npm i -D luckyexcel 2.引入luckysheet 注意:引入luckysheet,只能通过CDN或者直接引入静态资源的形式,不能npm install。 个人建议直接下载资源引入。我给你们提供一个下载资源的地址: …...
AIGPT重大升级,界面重新设计,功能更加饱满,用户体验升级
AIGPT AIGPT是一款功能强大的人工智能技术处理软件,不但拥有其他模型处理文本认知的能力还有AI绘画模型、拥有自身的插件库。 我们都知道使用ChatGPT是需要账号以及使用魔法的,实现其中的某一项对我们一般的初学者来说都是一次巨大的挑战,但…...
Web逆向-mtgsig1.2简单分析
{"a1": "1.2", # 加密版本"a2": new Date().valueOf() - serverTimeDiff, # 加密过程中用到的时间戳. 这次服主变坏了, 时间戳需要减去一个 serverTimeDiff(见a3) ! "a3": "这是把xxx信息加密后提交给服务器, 服主…...
python打卡day49
知识点回顾: 通道注意力模块复习空间注意力模块CBAM的定义 作业:尝试对今天的模型检查参数数目,并用tensorboard查看训练过程 import torch import torch.nn as nn# 定义通道注意力 class ChannelAttention(nn.Module):def __init__(self,…...
树莓派超全系列教程文档--(61)树莓派摄像头高级使用方法
树莓派摄像头高级使用方法 配置通过调谐文件来调整相机行为 使用多个摄像头安装 libcam 和 rpicam-apps依赖关系开发包 文章来源: http://raspberry.dns8844.cn/documentation 原文网址 配置 大多数用例自动工作,无需更改相机配置。但是,一…...
电脑插入多块移动硬盘后经常出现卡顿和蓝屏
当电脑在插入多块移动硬盘后频繁出现卡顿和蓝屏问题时,可能涉及硬件资源冲突、驱动兼容性、供电不足或系统设置等多方面原因。以下是逐步排查和解决方案: 1. 检查电源供电问题 问题原因:多块移动硬盘同时运行可能导致USB接口供电不足&#x…...
MVC 数据库
MVC 数据库 引言 在软件开发领域,Model-View-Controller(MVC)是一种流行的软件架构模式,它将应用程序分为三个核心组件:模型(Model)、视图(View)和控制器(Controller)。这种模式有助于提高代码的可维护性和可扩展性。本文将深入探讨MVC架构与数据库之间的关系,以…...
DIY|Mac 搭建 ESP-IDF 开发环境及编译小智 AI
前一阵子在百度 AI 开发者大会上,看到基于小智 AI DIY 玩具的演示,感觉有点意思,想着自己也来试试。 如果只是想烧录现成的固件,乐鑫官方除了提供了 Windows 版本的 Flash 下载工具 之外,还提供了基于网页版的 ESP LA…...
反射获取方法和属性
Java反射获取方法 在Java中,反射(Reflection)是一种强大的机制,允许程序在运行时访问和操作类的内部属性和方法。通过反射,可以动态地创建对象、调用方法、改变属性值,这在很多Java框架中如Spring和Hiberna…...
【RockeMQ】第2节|RocketMQ快速实战以及核⼼概念详解(二)
升级Dledger高可用集群 一、主从架构的不足与Dledger的定位 主从架构缺陷 数据备份依赖Slave节点,但无自动故障转移能力,Master宕机后需人工切换,期间消息可能无法读取。Slave仅存储数据,无法主动升级为Master响应请求ÿ…...
用docker来安装部署freeswitch记录
今天刚才测试一个callcenter的项目,所以尝试安装freeswitch 1、使用轩辕镜像 - 中国开发者首选的专业 Docker 镜像加速服务平台 编辑下面/etc/docker/daemon.json文件为 {"registry-mirrors": ["https://docker.xuanyuan.me"] }同时可以进入轩…...
Spring AI与Spring Modulith核心技术解析
Spring AI核心架构解析 Spring AI(https://spring.io/projects/spring-ai)作为Spring生态中的AI集成框架,其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似,但特别为多语…...
iOS性能调优实战:借助克魔(KeyMob)与常用工具深度洞察App瓶颈
在日常iOS开发过程中,性能问题往往是最令人头疼的一类Bug。尤其是在App上线前的压测阶段或是处理用户反馈的高发期,开发者往往需要面对卡顿、崩溃、能耗异常、日志混乱等一系列问题。这些问题表面上看似偶发,但背后往往隐藏着系统资源调度不当…...
