当前位置: 首页 > news >正文

pytorch之relu激活函数

目录

1、relu

2、relu6

3、leaky_relu

4、ELU

5、SELU

6、PReLU


1、relu

ReLU(Rectified Linear Unit)是一种常用的神经网络激活函数,它在PyTorch中被广泛使用。ReLU函数接受一个输入值,如果该值大于零,则返回该值;否则返回零。

在PyTorch中,可以使用torch.relu()函数来应用ReLU激活函数。

import torch as t
import matplotlib.pyplot as plt
import numpy as np
x=np.linspace(-100,100,1000)
y=t.nn.functional.relu(t.tensor(x,dtype=t.float32)).numpy()
plt.plot(x,y)
plt.title("relu")
plt.xlabel("x")
plt.ylabel("relu(x)")
plt.grid(True)
plt.show()
​

2、relu6

PyTorch中的ReLU6激活函数是一种常用的激活函数,其形式为f(x) = min(max(0, x), 6)。该函数将输入x限制在0和6之间,小于0的值会被截断为0,大于6的值会被截断为6。ReLU6激活函数可以帮助提高模型的非线性表达能力,并且具有较好的稳定性和抗饱和性。在PyTorch中,可以通过torch.nn.ReLU6()函数来使用ReLU6激活函数。

import torch as t
import matplotlib.pyplot as plt
import numpy as np
x=np.linspace(-100,100,1000)
y=t.nn.functional.relu6(t.tensor(x,dtype=t.float32)).numpy()
plt.plot(x,y)
plt.title("relu6")
plt.xlabel("x")
plt.ylabel("relu6(x)")
plt.grid(True)
plt.show()

3、leaky_relu

leaky_relu是PyTorch中的一种激活函数,用于引入非线性特性。它与传统的ReLU(修正线性单元)相似,但在负数输入时不会完全变为零,而是保留一个小的负斜率。这有助于避免“死亡神经元”,即在训练过程中停止响应的神经元。

在PyTorch中,可以使用torch.nn.functional模块中的leaky_relu函数来使用leaky_relu激活函数。

import torch as t
import matplotlib.pyplot as plt
import numpy as np
x=np.linspace(-100,100,1000)
y=t.nn.functional.leaky_relu(t.tensor(x,dtype=t.float32)).numpy()
plt.plot(x,y)
plt.title("leaky_relu")
plt.xlabel("x")
plt.ylabel("leaky_relu(x)")
plt.grid(True)
plt.show()
​

4、ELU

在PyTorch中,ELU(Exponential Linear Unit)激活函数是一种常用的非线性激活函数。它通过将输入值指数化,然后对负输入进行缩放,以实现更好的性能。

在PyTorch中,可以使用torch.nn.ELU模块来实现ELU激活函数。

import torch as t
import matplotlib.pyplot as plt
import numpy as np
x=np.linspace(-100,100,1000)
elu=t.nn.ELU()
y=elu(t.tensor(x,dtype=t.float32)).data.numpy()
plt.plot(x,y)
plt.title("ELU")
plt.xlabel("x")
plt.ylabel("ELU(x)")
plt.grid(True)
plt.show()

5、SELU

SELU(Scaled Exponential Linear Units)是一种激活函数,常用于神经网络中。

在PyTorch中,可以使用torch.nn.functional.selu()函数来实现SELU函数的运算。SELU函数的定义为:

SELU(x) = scale * (max(0, x) + min(0, alpha * (exp(x) - 1)))

其中,scale和alpha是两个可调的参数。通常情况下,scale的值取1.0507,alpha的值取1.6733。

import torch as t
import matplotlib.pyplot as plt
import numpy as np
x=np.linspace(-100,100,1000)
selu=t.nn.SELU()
y=selu(t.tensor(x,dtype=t.float32)).data.numpy()
plt.plot(x,y)
plt.title("SELU")
plt.xlabel("x")
plt.ylabel("SELU(x)")
plt.grid(True)
plt.show()

6、PReLU

PReLU(Parametric Rectified Linear Unit)是一种用于人工神经网络中的激活函数,可用于解决梯度消失和神经元死亡等问题。PReLU与ReLU(Rectified Linear Unit)类似,但具有可调参数。

PReLU的数学表达式如下:

f(x) = max(0, x) + a * min(0, x)

其中,x为输入,a为可调参数。当a=0时,PReLU即为传统的ReLU函数。

PReLU的优势在于它可以允许负值通过,使得神经元可以接收更丰富的信息。同时,通过调整参数a,可以控制负值部分的斜率,从而提供更大的模型灵活性。

在PyTorch中,可以使用torch.nn.PReLU()来创建一个PReLU的实例。

import torch as t
import matplotlib.pyplot as plt
import numpy as np
x=np.linspace(-100,100,1000)
prelu=t.nn.PReLU()
y=prelu(t.tensor(x,dtype=t.float32)).data.numpy()
plt.plot(x,y)
plt.title("PReLU")
plt.xlabel("x")
plt.ylabel("PReLU(x)")
plt.grid(True)
plt.show()

相关文章:

pytorch之relu激活函数

目录 1、relu 2、relu6 3、leaky_relu 4、ELU 5、SELU 6、PReLU 1、relu ReLU(Rectified Linear Unit)是一种常用的神经网络激活函数,它在PyTorch中被广泛使用。ReLU函数接受一个输入值,如果该值大于零,则返回该…...

UML---用例图

UML–用例图 0.用例图简介 用例图是一种UML(统一建模语言)的图形化表示方法,用于描述系统的功能和行为。它可以帮助系统分析师和开发人员理解系统的需求,用例图由参与者、用例和它们之间的关系组成。 1.用例图的组成部分 系统…...

后端配置跨域怎么配置

在后端配置跨域,需要在服务器的代码中添加相应的设置。以下是几种常见的后端语言的跨域配置方式: Node.js 在使用 Node.js 的 Express 框架时,可以使用 cors 中间件来处理跨域问题。安装 cors 中间件后,在代码中添加如下设置&am…...

【计算机组成】实模式/保护模式下地址分段(基段地址+偏移地址)的原因

一.硬编码/静态重定向 我们先来观察下没有地址分段时代CPU是怎么和内存们打交道,在8086CPU以前的老大哥们,访问内存时通常就是实打实的“指哪打哪”,程序指定要放在哪个地址,那就老老实实地放在哪个地址,比如程序A要放…...

Web逆向-某网络学院学习的”偷懒“思路分析

接到求助,帮朋友完成20课时的网络学习。 我想都没想就接下了,寻思找个接口直接把学习时间提交上去,易如反掌。 最不济最不济,咱还能16x播放,也简单的很 然鹅,当我登陆的时候,发现自己还是太天真…...

一个用python PyQT写的背单词小程序

主要用到了QGridLayout, QTableWidget import sys import os import pandas as pd from PyQt5.QtWidgets import *class DataFrameExample(QWidget):def __init__(self):super().__init__()self.initUI()def initUI(self):self.setWindowTitle(DataFrame Example)self.setGeom…...

AutoSAR配置与实践(深入篇)10.1 UDS刷写诊断服务解析(34/36/37服务)

AutoSAR配置与实践(深入篇)10.1 Boot刷写诊断服务解析(34/36/37服务) UDS刷写服务一、0x34服务1.1 0x34服务请求格式1.2 0x34服务响应格式1.3 举例说明二、TransferData (0x36) service2.1 0x36服务请求格式2.2 0x36服务响应格式2.3 举例说明三、RequestTransferExit (0x37…...

【机器学习】六、概率图模型

今天我们对概率图模型(Probabilistic Graphical Model,PGM)做一个总结。 模型表示 概率图模型,是指一种用图结构来描述多元随机变量之间条件独立关系的概率模型。 它提出的背景是为了更好研究复杂联合概率分布的数据特征&#x…...

机器视觉软件破解的背后是道高一尺,魔高一丈

讲个故事,小明从某购物平台花2000元买了一个C#机器视觉架构,压缩包带加密,卖家让小明先确认收货后给密码。 小明花了3元从另外一家卖家破解开压缩包密码,然后迅速从第一家卖家退货。小明成功省了1997元。 “道高一尺&#xff0c…...

【I/O流之旅】File类-零基础入门指南

🎊专栏【Java】 🌺每日一句:看不清楚未来时,就比别人坚持久一点 ⭐欢迎并且感谢大家指出我的问题 目录 1.File概述 2.File构造方法 (1).根据文件路径创建文件对象 (2).根据父路径名字符串和子路径名字符串创建对象 (3).根据父路径对应文件对象和子路…...

ArrayList和LinkedList的区别有哪些?

ArrayList 和 LinkedList 是 Java 中常用的两种集合类,它们之间有一些重要的区别,主要涉及到其内部实现和性能特点: 内部实现: ArrayList 是基于动态数组实现的。它使用一个数组来存储元素,当数组已满并需要添加新元素…...

Pyhotn: Mac安装selenium没有chromedriver-114以上及chromedriver无法挪到/usr/bin目录下的问题

1.0 安装selenium 终端输入: pip install selenium 查看版本: pip show selenium2.0 安装chromedriver 查看chrome版本 网上大多数是,基本到114就停了。 https://registry.npmmirror.com/binary.html?pathchromedriver/ 各种搜索&#…...

Java TCP服务端多线程接收RFID网络读卡器上传数据

本示例使用设备介绍:WIFI/TCP/UDP/HTTP协议RFID液显网络读卡器可二次开发语音播报POE-淘宝网 (taobao.com) import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.net.ServerSocket; import java.net.Socket; impor…...

SpringCloud——服务网关——GateWay

1.GateWay是什么? gateway也叫服务网关,SpringCloud GateWay使用的是Webflux中的reactor-netty响应式编程组件,底层使用了Netty通讯框架。 gateway的功能有反向代理、鉴权、流量控制、熔断、日志监控...... 2.为什么不使用Zuul&#xff1f…...

Linux程序的地址空间

Linux程序的地址空间 📟作者主页:慢热的陕西人 🌴专栏链接:Linux 📣欢迎各位大佬👍点赞🔥关注🚓收藏,🍉留言 本博客主要内容深刻理解了什么程序或者进程的地址…...

Docker安装Minio(稳定版)

1、安装 docker pull minio/minio:RELEASE.2021-06-17T00-10-46Z docker run -p 9000:9000 minio/minio:RELEASE.2021-06-17T00-10-46Z server /data 2、访问测试 3、MinIO自定义Access和Secret密钥 要覆盖MinIO的自动生成的密钥,您可以将Access和Secret密钥设为…...

大数据毕业设计选题推荐-超级英雄运营数据监控平台-Hadoop-Spark-Hive

✨作者主页:IT研究室✨ 个人简介:曾从事计算机专业培训教学,擅长Java、Python、微信小程序、Golang、安卓Android等项目实战。接项目定制开发、代码讲解、答辩教学、文档编写、降重等。 ☑文末获取源码☑ 精彩专栏推荐⬇⬇⬇ Java项目 Python…...

视频转码教程:轻松制作GIF动态图,一键高效剪辑操作

随着社交媒体的兴起,GIF动态图已经成为了人们表达情感、分享精彩瞬间的重要方式。而将视频转化为GIF动态图,不仅可以方便地在社交媒体上分享,还可以延长视频的播放时长,吸引更多的观众。本篇文章将为大家介绍如何将视频轻松转化为…...

Seata分布式事务实现原理

Seata可以解决分布式事务问题,利用GlobalTransacational(name "fsp-create-order",rollbackFor Exception.class)注解就可以实现全局的事务管理,但是我们需要明白原理的实现。 我们举例创建订单——>调减库存——>调扣余额——>改订…...

Rasa NLU中的组件

Rasa NLU部分主要是解决NER(序列建模)和意图识别(分类建模)这2个任务。Rasa NLP是一个基于DAG的通用框架,图中的顶点即组件。组件特征包括有顺序关系、可相互替换、可互斥和可同时使用。有向无环图(DAG&…...

C++_核心编程_多态案例二-制作饮品

#include <iostream> #include <string> using namespace std;/*制作饮品的大致流程为&#xff1a;煮水 - 冲泡 - 倒入杯中 - 加入辅料 利用多态技术实现本案例&#xff0c;提供抽象制作饮品基类&#xff0c;提供子类制作咖啡和茶叶*//*基类*/ class AbstractDr…...

Nginx server_name 配置说明

Nginx 是一个高性能的反向代理和负载均衡服务器&#xff0c;其核心配置之一是 server 块中的 server_name 指令。server_name 决定了 Nginx 如何根据客户端请求的 Host 头匹配对应的虚拟主机&#xff08;Virtual Host&#xff09;。 1. 简介 Nginx 使用 server_name 指令来确定…...

Matlab | matlab常用命令总结

常用命令 一、 基础操作与环境二、 矩阵与数组操作(核心)三、 绘图与可视化四、 编程与控制流五、 符号计算 (Symbolic Math Toolbox)六、 文件与数据 I/O七、 常用函数类别重要提示这是一份 MATLAB 常用命令和功能的总结,涵盖了基础操作、矩阵运算、绘图、编程和文件处理等…...

SpringTask-03.入门案例

一.入门案例 启动类&#xff1a; package com.sky;import lombok.extern.slf4j.Slf4j; import org.springframework.boot.SpringApplication; import org.springframework.boot.autoconfigure.SpringBootApplication; import org.springframework.cache.annotation.EnableCach…...

Aspose.PDF 限制绕过方案:Java 字节码技术实战分享(仅供学习)

Aspose.PDF 限制绕过方案&#xff1a;Java 字节码技术实战分享&#xff08;仅供学习&#xff09; 一、Aspose.PDF 简介二、说明&#xff08;⚠️仅供学习与研究使用&#xff09;三、技术流程总览四、准备工作1. 下载 Jar 包2. Maven 项目依赖配置 五、字节码修改实现代码&#…...

免费PDF转图片工具

免费PDF转图片工具 一款简单易用的PDF转图片工具&#xff0c;可以将PDF文件快速转换为高质量PNG图片。无需安装复杂的软件&#xff0c;也不需要在线上传文件&#xff0c;保护您的隐私。 工具截图 主要特点 &#x1f680; 快速转换&#xff1a;本地转换&#xff0c;无需等待上…...

stm32wle5 lpuart DMA数据不接收

配置波特率9600时&#xff0c;需要使用外部低速晶振...

Ubuntu系统多网卡多相机IP设置方法

目录 1、硬件情况 2、如何设置网卡和相机IP 2.1 万兆网卡连接交换机&#xff0c;交换机再连相机 2.1.1 网卡设置 2.1.2 相机设置 2.3 万兆网卡直连相机 1、硬件情况 2个网卡n个相机 电脑系统信息&#xff0c;系统版本&#xff1a;Ubuntu22.04.5 LTS&#xff1b;内核版本…...

快速排序算法改进:随机快排-荷兰国旗划分详解

随机快速排序-荷兰国旗划分算法详解 一、基础知识回顾1.1 快速排序简介1.2 荷兰国旗问题 二、随机快排 - 荷兰国旗划分原理2.1 随机化枢轴选择2.2 荷兰国旗划分过程2.3 结合随机快排与荷兰国旗划分 三、代码实现3.1 Python实现3.2 Java实现3.3 C实现 四、性能分析4.1 时间复杂度…...

aardio 自动识别验证码输入

技术尝试 上周在发学习日志时有网友提议“在网页上识别验证码”&#xff0c;于是尝试整合图像识别与网页自动化技术&#xff0c;完成了这套模拟登录流程。核心思路是&#xff1a;截图验证码→OCR识别→自动填充表单→提交并验证结果。 代码在这里 import soImage; import we…...