机器学习基础之《回归与聚类算法(5)—分类的评估方法》
问题:上一篇的案例,真的患癌症的,能被检查出来的概率?
一、精确率和召回率
1、混淆矩阵
在分类任务下,预测结果(Predicted Condition)与正确标记(True Condition)之间存在四种不同的组合,构成混淆矩阵(适用于多分类)
预测结果:是预测值
正确标记:是真实值
用来求精确率和召回率的
TP = True Possitive
FN = False Negative
FP = False Possitive
TN = True Negative
2、精确率(Precision)与召回率(Recall)
精确率:预测结果为正例样本中真实为正例的比例
即是,TP / (TP + FP)
召回率:真实为正例的样本中预测结果为正例的比例
即是,TP / (TP + FN)
3、真的患癌症的,能被检查出来的概率 - 召回率
二、F1-score
1、反映了模型的稳健性
等价于:2*精确率*召回率 / (精确率 + 召回率)
Precision是预测的好瓜中有多少真正的好瓜,Recall是所有真正的好瓜被预测对了多少
三、分类评估报告API
1、sklearn.metrics.classification_report(y_true, y_pred, labels=[], target_names=None)
y_true:真实目标值
y_pred:估计器预测目标值
labels:指定类别对应的数字
我们在传y_true、y_pred传的是数字,将数字表示出来
target_names:目标类别名称
分类报告显示
return:每个类别精确率与召回率
2、在上一篇代码后添加
# 查看精确率、召回率、F1-score
from sklearn.metrics import classification_reportreport = classification_report(y_test, y_predict, labels=[2, 4], target_names=["良性", "恶性"])print(report)
运行结果:
support是样本数量
四、样本不均衡的情况
1、假设这样一个情况,总共有100个人,如果99个样本癌症,1个样本非癌症,不管怎样我全都预测正例(默认癌症为正例),准确率就为99%但是这样效果并不好,这就是样本不均衡下的评估问题
准确率:99%
召回率:99 / 99 = 100%
精确率:99 / 100 = 99%
F1-score:2*99%*100% / 199% = 99.497%
就是瞎猜,全都蒙成换了癌症,不负责任的模型
这种情况我们是要避免的,我们目前学习到的这些分类指标都不能反映出它的问题所在
样本不均衡,正样本太多,反例太少
五、ROC曲线与AUC指标

1、ROC曲线
蓝色的线是ROC曲线
2、AUC指标
ROC曲线和x轴、y轴包成的区域的面积
衡量好坏,我们看的是AUC指标,AUC越接近1越好,越接近0.5越不好
3、ROC曲线是怎么来的
TPR = TP / (TP + FN) - 就是召回率
所有真实类别为1的样本中,预测类别为1的比例
FPR = FP / (FP + FN)
所有真实类别为0的样本中,预测类别为1的比例
TPR是正例的召回率,FPR是反例的召回率
ROC曲线就是由TPR和FPR这两个指标构成的
当TPR=FPR:
正例的召回率、反例的召回率都为1,说明是在瞎猜,就是红色的斜线,面积是 1*1/2 = 0.5
当TPR>FPR:
TPR接近于1,FPR接近于0,就是接近于Perfect Classification,面积是 1*1=1
当TPR<FPR:
就是一条反曲线,做反向预测用
4、AUC的意义
(1)AUC的概率意义是随机取一对正负样本,正样本得分大于负样本的概率
(2)AUC的最小值为0.5,最大值为1,取值越高越好
(3)AUC=1,完美分类器,采用这个预测模型时,不管设定什么阈值都能得出完美预测。绝大多数预测的场合,不存在完美分类器
(4)0.5<AUC<1,优于随机猜测。这个分类器(模型)妥善设定阈值的话,能有预测价值
(5)最终AUC的范围在[0.5, 1]之间,并且越接近1越好
六、AUC的计算API
1、sklearn.metrics.roc_auc_score(y_true, y_score)
计算ROC曲线面积,即AUC值
y_true:每个样本的真实类别,必须传0(反例),1(正例)
y_score:可以是预测得分,可以是正例的估计概率、置信值或者分类器方法的返回值
2、代码
y_test.head()# y_true:每个样本的真实类别,必须传0(反例),1(正例)
# 将y_test转换成0,1
y_true = np.where(y_test > 3, 1, 0)y_truefrom sklearn.metrics import roc_auc_scoreroc_auc_score(y_true, y_predict)
运行结果:
七、小结
AUC只能用来评价二分类
AUC非常适合评价样本不平衡中的分类器性能
相关文章:
机器学习基础之《回归与聚类算法(5)—分类的评估方法》
问题:上一篇的案例,真的患癌症的,能被检查出来的概率? 一、精确率和召回率 1、混淆矩阵 在分类任务下,预测结果(Predicted Condition)与正确标记(True Condition)之间存在四种不同的组合,构成混淆矩阵(适…...
如何在macbook上删除文件?Mac删除文件的多种方法
在使用MacBook电脑时,桌面上经常会积累大量的文件,而这些文件可能已经不再需要或已经过时。为了保持桌面的整洁和提高电脑性能,我们需要及时删除这些文件。本文将介绍MacBook怎么删除桌面文件,以及macbook删除桌面文件快捷键。 一…...
Java代码Demo——Map根据key或value排序
Map根据key排序 升序 Demo代码: //使用TreeMap Map<Integer, String> map new TreeMap<>(); map.put(10, "第10名次"); map.put(15, "第15名次"); map.put(1, "第1名次"); map.put(5, "第5名次"); map.put…...
一个Linux自动备份脚本的示例
一个简单的Linux自动备份脚本的示例,根据需要进行自定义: 请确保按照您的需求修改source_dir和backup_dir为要备份的源目录和备份目录的路径。此脚本使用tar命令创建一个以当前日期命名的压缩备份文件,并在备份完成后检查是否成功。此外&…...
[论文阅读]PV-RCNN++
PV-RCNN PV-RCNN: Point-Voxel Feature Set Abstraction With Local Vector Representation for 3D Object Detection 论文网址:PV-RCNN 论文代码:PV-RCNN 简读论文 这篇论文提出了两个用于3D物体检测的新框架PV-RCNN和PV-RCNN,主要的贡献如下: 提出P…...
测试老鸟整理,Postman加密接口测试-Rsa/Aes对参数加密(详细总结)
目录:导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结(尾部小惊喜) 前言 一些问题 postma…...
JavaScript使用对象
对象(object)是最基本、最通用的类型,具有复合性结构,属于引用型数据,对象的结构具有弹性,内部的数据是无序的,每个成员被称为属性。在JavaScript中,对象是一个泛化的概念,任何值都可以转换为对…...
微带线的ABCD矩阵的推导、转换与级联-Matlab计算实例
微带线的ABCD矩阵的推导、转换与级联-Matlab计算实例 散射参数矩阵有实际的物理意义,但是其无法级联计算,但是ABCD参数和传输散射矩阵可以级联计算,在此先简单介绍ABCD参数矩阵的基本用法。 1、微带线的ABCD矩阵的推导 其他的一些常用的二端…...
“网站不安全”该如何解决
当我们的网站被客户访问的时候,经常会出现提示不安全的情况,导致客户的不信任,从而出现客户流失的现象,这种情况我们应该如何解决呢? 首先,我们要确定网站会出现不安全的原因,一般来说ÿ…...
gitlab数据备份和恢复
gitlab数据备份 sudo gitlab-rake gitlab:backup:create备份文件默认存放在/var/opt/gitlab/backups路径下, 生成1697101003_2023_10_12_12.0.3-ee_gitlab_backup.tar 文件 gitlab数据恢复 sudo gitlab-rake gitlab:backup:restore BACKUP1697101003_2023_10_12_…...
嵌入式Linux和stm32区别? 之间有什么关系吗?
嵌入式Linux和stm32区别? 之间有什么关系吗? 主要体现在以下几个方面: 1.硬件资源不同 单片机一般是芯片内部集成flash、ram,ARM一般是CPU,配合外部的flash、ram、sd卡存储器使用。最近很多小伙伴找我,说想要一些嵌…...
【Redis】String字符串类型-内部编码使用场景
文章目录 内部编码使用场景缓存功能计数功能共享会话手机验证码 内部编码 字符串类型的内部编码有3种: int:8个字节(64位)的⻓整型,存储整数embstr:压缩字符串,适用于表示较短的字符串raw&…...
电脑发热发烫,具体硬件温度达到多少度才算异常?
环境: 联想E14 问题描述: 电脑发热发烫,具体硬件温度达到多少度才算异常? 解决方案: 电脑硬件的温度正常范围会因设备类型和使用的具体硬件而有所不同。一般来说,以下是各种硬件的正常温度范围: CPU:正…...
计算机网络第4章-IPv6和寻址
IP地址的分配 为了获取一块IP地址用于一个组织的子网内,于是我们向ISP联系,ISP则会从已分给我们的更大 地址块中提供一些地址。 例如,ISP也许已经分配了地址块200.23.16.0/20。 该ISP可以依次将该地址块分成8个长度相等的连续地址块&…...
Lazarus安装和入门资料
azarus-2.2.6-fpc-3.2.2-win64 下载地址 Lazarus 基础教程 - Lazarus Tutorials for Beginners Lazarus Tutorial #1 - Learning programming_哔哩哔哩_bilibili https://www.devstructor.com/index.php?pagetutorials Lazarus是一款开源免费的object pascal语言RAD IDE&…...
mediapipe流水线分析 二
目标检测 Graph 一 流水线上游输入处理 1 TfLiteConverterCalculator 将输入的数据转换成tensorflow api 支持的Tensor TfLiteTensor 并初始化相关输入输出节点 ,该类的业务主要通过 interpreter std::unique_ptrtflite::Interpreter interpreter_ nullptr; 实现…...
1.性能优化
概述 今日目标: 性能优化的终极目标是什么压力测试压力测试的指标 性能优化的终极目标是什么 用户体验 产品设计(非技术) 系统性能(快,3秒不能更久了) 后端:RT,TPS,并发数 影响因素01:数据库读写,RPCÿ…...
使用Plsql+oracle client 连接 Oracle数据库
2011年入职老东家X煤集团的时候,在csnd上写了一篇blog,题目叫“什么是ERP”,从此跳入DBA了这个烂坑,目前公司的数据库一部分是Oracle,另一部分是MySQL的,少量MSSQL,还需要捡起来一部分ÿ…...
centos获取服务器公网ip
查看公网IP 用下面几个命令: #curl ifconfig.me #curl icanhazip.com #curl cip.cc...
思谋科技进博首秀:工业多模态大模型IndustryGPT V1.0正式发布
大模型技术正在引领新一轮工业革命,但将其应用于工业制造,仍面临许多挑战,专业知识的缺乏是关键难点。11月5日,香港中文大学终身教授、思谋科技创始人兼董事长贾佳亚受邀参加第六届中国国际进口博览会暨虹桥国际经济论坛开幕式。虹…...
docker详细操作--未完待续
docker介绍 docker官网: Docker:加速容器应用程序开发 harbor官网:Harbor - Harbor 中文 使用docker加速器: Docker镜像极速下载服务 - 毫秒镜像 是什么 Docker 是一种开源的容器化平台,用于将应用程序及其依赖项(如库、运行时环…...
三维GIS开发cesium智慧地铁教程(5)Cesium相机控制
一、环境搭建 <script src"../cesium1.99/Build/Cesium/Cesium.js"></script> <link rel"stylesheet" href"../cesium1.99/Build/Cesium/Widgets/widgets.css"> 关键配置点: 路径验证:确保相对路径.…...
Opencv中的addweighted函数
一.addweighted函数作用 addweighted()是OpenCV库中用于图像处理的函数,主要功能是将两个输入图像(尺寸和类型相同)按照指定的权重进行加权叠加(图像融合),并添加一个标量值&#x…...
【算法训练营Day07】字符串part1
文章目录 反转字符串反转字符串II替换数字 反转字符串 题目链接:344. 反转字符串 双指针法,两个指针的元素直接调转即可 class Solution {public void reverseString(char[] s) {int head 0;int end s.length - 1;while(head < end) {char temp …...
土地利用/土地覆盖遥感解译与基于CLUE模型未来变化情景预测;从基础到高级,涵盖ArcGIS数据处理、ENVI遥感解译与CLUE模型情景模拟等
🔍 土地利用/土地覆盖数据是生态、环境和气象等诸多领域模型的关键输入参数。通过遥感影像解译技术,可以精准获取历史或当前任何一个区域的土地利用/土地覆盖情况。这些数据不仅能够用于评估区域生态环境的变化趋势,还能有效评价重大生态工程…...
AI,如何重构理解、匹配与决策?
AI 时代,我们如何理解消费? 作者|王彬 封面|Unplash 人们通过信息理解世界。 曾几何时,PC 与移动互联网重塑了人们的购物路径:信息变得唾手可得,商品决策变得高度依赖内容。 但 AI 时代的来…...
Redis:现代应用开发的高效内存数据存储利器
一、Redis的起源与发展 Redis最初由意大利程序员Salvatore Sanfilippo在2009年开发,其初衷是为了满足他自己的一个项目需求,即需要一个高性能的键值存储系统来解决传统数据库在高并发场景下的性能瓶颈。随着项目的开源,Redis凭借其简单易用、…...
比较数据迁移后MySQL数据库和OceanBase数据仓库中的表
设计一个MySQL数据库和OceanBase数据仓库的表数据比较的详细程序流程,两张表是相同的结构,都有整型主键id字段,需要每次从数据库分批取得2000条数据,用于比较,比较操作的同时可以再取2000条数据,等上一次比较完成之后,开始比较,直到比较完所有的数据。比较操作需要比较…...
适应性Java用于现代 API:REST、GraphQL 和事件驱动
在快速发展的软件开发领域,REST、GraphQL 和事件驱动架构等新的 API 标准对于构建可扩展、高效的系统至关重要。Java 在现代 API 方面以其在企业应用中的稳定性而闻名,不断适应这些现代范式的需求。随着不断发展的生态系统,Java 在现代 API 方…...
在 Spring Boot 中使用 JSP
jsp? 好多年没用了。重新整一下 还费了点时间,记录一下。 项目结构: pom: <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0" xmlns:xsi"http://ww…...
