当前位置: 首页 > news >正文

1.性能优化

概述

今日目标:

  • 性能优化的终极目标是什么
  • 压力测试
  • 压力测试的指标

性能优化的终极目标是什么

用户体验 = 产品设计(非技术) + 系统性能(快,3秒不能更久了)

后端:RT,TPS,并发数

  • 影响因素01:数据库读写,RPC,网络IO,逻辑计算复杂度,缓存
  • 影响因素02:JVM[ Throughput,Footprint,Latency ]

压力测试

  • 什么是压力测试:不断施加压力,预估系统负载能力的一种测试
  • 为什么要对系统进行压测?有必要?
    • 一般而言,只有系统基础功能测试验证完成,系统趋于稳定的情况下,才会进行压力测试
  • 压测的目的是什么?
    • 1.当负载逐渐增加时,观察系统各项性能指标的变化情况是否有异常
    • 2.发现系统的性能短板,进行针对性的性能优化
    • 3.判断系统在高并发情况下是否会报错,进程是否会挂掉
    • 4.测试在系统某个方面达到瓶颈时,粗略估计系统性能上限

压力测试的指标

指标含义
响应时间(RT)是指系统对请求作出响应的平均时间,对于单用户的系统,响应时间可以很好度量系统的性能
吞吐量(Throughput)是指系统在单位时间内处理请求的数量每秒事务数TPS也算是吞吐量的一种
资源利用率CPU占用率,内存使用率,系统负载,网络I/O(降本增效时会考虑)
并发用户数是指系统可以,同时承载的正常使用系统功能的用户数量,用户不同的使用模式会导致不同用户在单位时间发出不同数量的请求
错误率失败请求占比,在测试时添加响应断言,验证不通过即记为错误;若不添加,响应码非200即为错误

各个公司的指标可能还一样,不过前三样,是很重要的

在这里插入图片描述
如上图:总体上来看 2333

  • 两个点:最优用户并发数(利用率刚刚达到峰值),最大并发用户数(吞吐量开始下降的起点,且响应时间还可以接受)
  • 三条线: RT,Throughput,资源利用率
  • 三种状态:资源饱和,吞吐量下降,用户受影响

压力测试工具JMeter

JMeter是Apache组织开发的基于Java的压力测试工具,用于对软件做压力测试;可以用于测试静态和动态资源 ,例如静态文件, Java 小服务程序,数据库,等等。

注意: 需要安装 jdk

压力测试案例

目标:完成压测案例,评测 spring boot 项目的吞吐量上限。
步骤:

  • 1.创建测试计划
  • 配置线程组,http请求,断言,结果监听器
  • 执行测试
  • 查看测试结果,分析测试结果

测试案例移步至此

结束

性能优化理论至此就结束了,如有疑问,欢迎评论区留言。

相关文章:

1.性能优化

概述 今日目标: 性能优化的终极目标是什么压力测试压力测试的指标 性能优化的终极目标是什么 用户体验 产品设计(非技术) 系统性能(快,3秒不能更久了) 后端:RT,TPS,并发数 影响因素01:数据库读写,RPC&#xff…...

使用Plsql+oracle client 连接 Oracle数据库

2011年入职老东家X煤集团的时候,在csnd上写了一篇blog,题目叫“什么是ERP”,从此跳入DBA了这个烂坑,目前公司的数据库一部分是Oracle,另一部分是MySQL的,少量MSSQL,还需要捡起来一部分&#xff…...

centos获取服务器公网ip

查看公网IP 用下面几个命令: #curl ifconfig.me #curl icanhazip.com #curl cip.cc...

思谋科技进博首秀:工业多模态大模型IndustryGPT V1.0正式发布

大模型技术正在引领新一轮工业革命,但将其应用于工业制造,仍面临许多挑战,专业知识的缺乏是关键难点。11月5日,香港中文大学终身教授、思谋科技创始人兼董事长贾佳亚受邀参加第六届中国国际进口博览会暨虹桥国际经济论坛开幕式。虹…...

Wsl2 Ubuntu在不安装Docker Desktop情况下使用Docker

目录 1. 前提条件 2.安装Distrod 3. 常见问题 3.1.docker compose 问题无法使用问题 3.1. docker-compose up报错 参考文档 1. 前提条件 win10 WSL2 Ubuntu(截止202308最新版本是20.04.xx) 有不少的博客都是建议直接安装docker desktop,这样无论在windows…...

pytorch之relu激活函数

目录 1、relu 2、relu6 3、leaky_relu 4、ELU 5、SELU 6、PReLU 1、relu ReLU(Rectified Linear Unit)是一种常用的神经网络激活函数,它在PyTorch中被广泛使用。ReLU函数接受一个输入值,如果该值大于零,则返回该…...

UML---用例图

UML–用例图 0.用例图简介 用例图是一种UML(统一建模语言)的图形化表示方法,用于描述系统的功能和行为。它可以帮助系统分析师和开发人员理解系统的需求,用例图由参与者、用例和它们之间的关系组成。 1.用例图的组成部分 系统…...

后端配置跨域怎么配置

在后端配置跨域,需要在服务器的代码中添加相应的设置。以下是几种常见的后端语言的跨域配置方式: Node.js 在使用 Node.js 的 Express 框架时,可以使用 cors 中间件来处理跨域问题。安装 cors 中间件后,在代码中添加如下设置&am…...

【计算机组成】实模式/保护模式下地址分段(基段地址+偏移地址)的原因

一.硬编码/静态重定向 我们先来观察下没有地址分段时代CPU是怎么和内存们打交道,在8086CPU以前的老大哥们,访问内存时通常就是实打实的“指哪打哪”,程序指定要放在哪个地址,那就老老实实地放在哪个地址,比如程序A要放…...

Web逆向-某网络学院学习的”偷懒“思路分析

接到求助,帮朋友完成20课时的网络学习。 我想都没想就接下了,寻思找个接口直接把学习时间提交上去,易如反掌。 最不济最不济,咱还能16x播放,也简单的很 然鹅,当我登陆的时候,发现自己还是太天真…...

一个用python PyQT写的背单词小程序

主要用到了QGridLayout, QTableWidget import sys import os import pandas as pd from PyQt5.QtWidgets import *class DataFrameExample(QWidget):def __init__(self):super().__init__()self.initUI()def initUI(self):self.setWindowTitle(DataFrame Example)self.setGeom…...

AutoSAR配置与实践(深入篇)10.1 UDS刷写诊断服务解析(34/36/37服务)

AutoSAR配置与实践(深入篇)10.1 Boot刷写诊断服务解析(34/36/37服务) UDS刷写服务一、0x34服务1.1 0x34服务请求格式1.2 0x34服务响应格式1.3 举例说明二、TransferData (0x36) service2.1 0x36服务请求格式2.2 0x36服务响应格式2.3 举例说明三、RequestTransferExit (0x37…...

【机器学习】六、概率图模型

今天我们对概率图模型(Probabilistic Graphical Model,PGM)做一个总结。 模型表示 概率图模型,是指一种用图结构来描述多元随机变量之间条件独立关系的概率模型。 它提出的背景是为了更好研究复杂联合概率分布的数据特征&#x…...

机器视觉软件破解的背后是道高一尺,魔高一丈

讲个故事,小明从某购物平台花2000元买了一个C#机器视觉架构,压缩包带加密,卖家让小明先确认收货后给密码。 小明花了3元从另外一家卖家破解开压缩包密码,然后迅速从第一家卖家退货。小明成功省了1997元。 “道高一尺&#xff0c…...

【I/O流之旅】File类-零基础入门指南

🎊专栏【Java】 🌺每日一句:看不清楚未来时,就比别人坚持久一点 ⭐欢迎并且感谢大家指出我的问题 目录 1.File概述 2.File构造方法 (1).根据文件路径创建文件对象 (2).根据父路径名字符串和子路径名字符串创建对象 (3).根据父路径对应文件对象和子路…...

ArrayList和LinkedList的区别有哪些?

ArrayList 和 LinkedList 是 Java 中常用的两种集合类,它们之间有一些重要的区别,主要涉及到其内部实现和性能特点: 内部实现: ArrayList 是基于动态数组实现的。它使用一个数组来存储元素,当数组已满并需要添加新元素…...

Pyhotn: Mac安装selenium没有chromedriver-114以上及chromedriver无法挪到/usr/bin目录下的问题

1.0 安装selenium 终端输入: pip install selenium 查看版本: pip show selenium2.0 安装chromedriver 查看chrome版本 网上大多数是,基本到114就停了。 https://registry.npmmirror.com/binary.html?pathchromedriver/ 各种搜索&#…...

Java TCP服务端多线程接收RFID网络读卡器上传数据

本示例使用设备介绍:WIFI/TCP/UDP/HTTP协议RFID液显网络读卡器可二次开发语音播报POE-淘宝网 (taobao.com) import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.net.ServerSocket; import java.net.Socket; impor…...

SpringCloud——服务网关——GateWay

1.GateWay是什么? gateway也叫服务网关,SpringCloud GateWay使用的是Webflux中的reactor-netty响应式编程组件,底层使用了Netty通讯框架。 gateway的功能有反向代理、鉴权、流量控制、熔断、日志监控...... 2.为什么不使用Zuul&#xff1f…...

Linux程序的地址空间

Linux程序的地址空间 📟作者主页:慢热的陕西人 🌴专栏链接:Linux 📣欢迎各位大佬👍点赞🔥关注🚓收藏,🍉留言 本博客主要内容深刻理解了什么程序或者进程的地址…...

利用ngx_stream_return_module构建简易 TCP/UDP 响应网关

一、模块概述 ngx_stream_return_module 提供了一个极简的指令&#xff1a; return <value>;在收到客户端连接后&#xff0c;立即将 <value> 写回并关闭连接。<value> 支持内嵌文本和内置变量&#xff08;如 $time_iso8601、$remote_addr 等&#xff09;&a…...

Mybatis逆向工程,动态创建实体类、条件扩展类、Mapper接口、Mapper.xml映射文件

今天呢&#xff0c;博主的学习进度也是步入了Java Mybatis 框架&#xff0c;目前正在逐步杨帆旗航。 那么接下来就给大家出一期有关 Mybatis 逆向工程的教学&#xff0c;希望能对大家有所帮助&#xff0c;也特别欢迎大家指点不足之处&#xff0c;小生很乐意接受正确的建议&…...

cf2117E

原题链接&#xff1a;https://codeforces.com/contest/2117/problem/E 题目背景&#xff1a; 给定两个数组a,b&#xff0c;可以执行多次以下操作&#xff1a;选择 i (1 < i < n - 1)&#xff0c;并设置 或&#xff0c;也可以在执行上述操作前执行一次删除任意 和 。求…...

【论文笔记】若干矿井粉尘检测算法概述

总的来说&#xff0c;传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度&#xff0c;通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...

【android bluetooth 框架分析 04】【bt-framework 层详解 1】【BluetoothProperties介绍】

1. BluetoothProperties介绍 libsysprop/srcs/android/sysprop/BluetoothProperties.sysprop BluetoothProperties.sysprop 是 Android AOSP 中的一种 系统属性定义文件&#xff08;System Property Definition File&#xff09;&#xff0c;用于声明和管理 Bluetooth 模块相…...

AI编程--插件对比分析:CodeRider、GitHub Copilot及其他

AI编程插件对比分析&#xff1a;CodeRider、GitHub Copilot及其他 随着人工智能技术的快速发展&#xff0c;AI编程插件已成为提升开发者生产力的重要工具。CodeRider和GitHub Copilot作为市场上的领先者&#xff0c;分别以其独特的特性和生态系统吸引了大量开发者。本文将从功…...

Unity | AmplifyShaderEditor插件基础(第七集:平面波动shader)

目录 一、&#x1f44b;&#x1f3fb;前言 二、&#x1f608;sinx波动的基本原理 三、&#x1f608;波动起来 1.sinx节点介绍 2.vertexPosition 3.集成Vector3 a.节点Append b.连起来 4.波动起来 a.波动的原理 b.时间节点 c.sinx的处理 四、&#x1f30a;波动优化…...

破解路内监管盲区:免布线低位视频桩重塑停车管理新标准

城市路内停车管理常因行道树遮挡、高位设备盲区等问题&#xff0c;导致车牌识别率低、逃费率高&#xff0c;传统模式在复杂路段束手无策。免布线低位视频桩凭借超低视角部署与智能算法&#xff0c;正成为破局关键。该设备安装于车位侧方0.5-0.7米高度&#xff0c;直接规避树枝遮…...

前端中slice和splic的区别

1. slice slice 用于从数组中提取一部分元素&#xff0c;返回一个新的数组。 特点&#xff1a; 不修改原数组&#xff1a;slice 不会改变原数组&#xff0c;而是返回一个新的数组。提取数组的部分&#xff1a;slice 会根据指定的开始索引和结束索引提取数组的一部分。不包含…...

深度学习之模型压缩三驾马车:模型剪枝、模型量化、知识蒸馏

一、引言 在深度学习中&#xff0c;我们训练出的神经网络往往非常庞大&#xff08;比如像 ResNet、YOLOv8、Vision Transformer&#xff09;&#xff0c;虽然精度很高&#xff0c;但“太重”了&#xff0c;运行起来很慢&#xff0c;占用内存大&#xff0c;不适合部署到手机、摄…...