力扣第300题 最长递增子序列 c++ 动态规划题 附Java代码
题目
300. 最长递增子序列
中等
相关标签
数组 二分查找 动态规划
给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。
子序列 是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。
示例 1:
输入:nums = [10,9,2,5,3,7,101,18] 输出:4 解释:最长递增子序列是 [2,3,7,101],因此长度为 4 。
示例 2:
输入:nums = [0,1,0,3,2,3] 输出:4
示例 3:
输入:nums = [7,7,7,7,7,7,7] 输出:1
提示:
1 <= nums.length <= 2500-104 <= nums[i] <= 104
进阶:
- 你能将算法的时间复杂度降低到
O(n log(n))吗?
思路和解题方法
if(nums.size()<=1) return nums.size();:特判,如果数组nums长度为0或1,直接返回其长度。vector<int> dp(nums.size(), 1);:创建一个大小为nums长度的数组dp,用于存储以nums[i]结尾的最长上升子序列的长度。初始值全部赋为1,因为每个元素本身也可以构成一个长度为1的上升子序列。int ans = 0;:初始化最长上升子序列的长度为0。for(int i = 1; i < nums.size(); i++):从第二个元素开始遍历数组nums。for(int j = 0; j < i; j++):在i之前的元素中,找到比nums[i]小的元素。if(nums[i] > nums[j]):如果nums[i]大于nums[j],则可以将nums[i]加入到以nums[j]结尾的最长上升子序列中。dp[i] = max(dp[i], dp[j] + 1);:更新以nums[i]结尾的最长上升子序列的长度。当前位置的值为前面比它小的元素中以每个元素结尾的最长上升子序列长度的最大值+1。if(ans < dp[i]) ans = dp[i];:更新最长上升子序列的长度。return ans;:返回最长上升子序列的长度。
复杂度
时间复杂度:
O(n*n)
时间复杂度分析: 代码中使用了两重循环,时间复杂度为O(n^2)。
其中,内层循环每次迭代都会执行常数个操作(比较和更新dp数组),因此时间复杂度为O(1)。
外层循环的迭代次数为n-1,因此时间复杂度为O(n)。
因此,算法的总时间复杂度为O(n^2)。
空间复杂度
O(n)
空间复杂度分析: 代码中使用了一个长度为n的dp数组,因此空间复杂度为O(n)。
c++ 代码
class Solution {
public:int lengthOfLIS(vector<int>& nums) {if(nums.size()<=1) return nums.size();vector<int> dp(nums.size(), 1); // 创建一个dp数组,用于存储以nums[i]结尾的最长上升子序列的长度,默认初始为1int ans = 0; // 初始化最长上升子序列的长度为0for(int i = 1; i < nums.size(); i++) // 遍历数组nums{for(int j = 0; j < i; j++) // 在i之前的元素中,找到比nums[i]小的元素{if(nums[i] > nums[j]) // 如果nums[i]大于nums[j],则可以将nums[i]加入到以nums[j]结尾的最长上升子序列中dp[i] = max(dp[i], dp[j] + 1); // 更新以nums[i]结尾的最长上升子序列的长度}if(ans < dp[i]) // 更新最长上升子序列的长度ans = dp[i];}return ans; // 返回最长上升子序列的长度}
};
Java代码
class Solution {public int lengthOfLIS(int[] nums) {int[] dp = new int[nums.length]; // 创建一个大小为nums.length的数组dp,用于存储以nums[i]结尾的最长上升子序列的长度,默认初始为1int res = 0; // 初始化最长上升子序列的长度为0Arrays.fill(dp, 1); // 将dp数组中的元素全部赋值为1for (int i = 1; i < dp.length; i++) { // 遍历数组nums,从第二个元素开始for (int j = 0; j < i; j++) { // 在i之前的元素中,找到比nums[i]小的元素if (nums[i] > nums[j]) { // 如果nums[i]大于nums[j],则可以将nums[i]加入到以nums[j]结尾的最长上升子序列中dp[i] = Math.max(dp[i], dp[j] + 1); // 更新以nums[i]结尾的最长上升子序列的长度}res = Math.max(res, dp[i]); // 更新最长上升子序列的长度}}return res; // 返回最长上升子序列的长度}
}
觉得有用的话可以点点赞,支持一下。
如果愿意的话关注一下。会对你有更多的帮助。
每天都会不定时更新哦 >人< 。
相关文章:
力扣第300题 最长递增子序列 c++ 动态规划题 附Java代码
题目 300. 最长递增子序列 中等 相关标签 数组 二分查找 动态规划 给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。 子序列 是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例…...
Si3262 集成低功耗SOC 三合一智能门锁应用芯片
Si3262 是一款G度集成的低功耗 SOC 芯片,其集成了基于 RISC-V 核的低功耗MCU 和工作在 13.56MHz 的非接触式读写器模块。 读写器模块支持 ISO/IEC 14443 A/B/MIFARE 协议,支持自动载波侦测功能(ACD)。无需外W其他电路,…...
linux rsyslog介绍
Rsyslog网址:https://www.rsyslog.com/ Rsyslog is the rocket-fast system for log processing. It offers high-performance, great security features and a modular design. While it started as a regular syslogd, rsyslog has evolved into a kind of swis…...
项目部署之安装和配置Canal
1.Canal介绍 Canal是阿里巴巴的一个开源项目,基于java实现,整体已经在很多大型的互联网项目生产环境中使用,包括阿里、美团等都有广泛的应用,是一个非常成熟的数据库同步方案,基础的使用只需要进行简单的配置即可。 …...
基于Skywalking的全链路跟踪实现
在前文“分布式应用全链路跟踪实现”中介绍了分布式应用全链路跟踪的几种实现方法,本文将重点介绍基于Skywalking的全链路实现,包括Skywalking的整体架构和基本概念原理、Skywalking环境部署、SpringBoot和Python集成Skywalking监控实现等。 1、Skywalki…...
Spark Core
Spark Core 本文来自 B站 黑马程序员 - Spark教程 :原地址 第一章 RDD详解 1.1 为什么需要RDD 分布式计算需要 分区控制shuffle控制数据存储、序列化、发送数据计算API等一系列功能 这些功能,不能简单的通过Python内置的本地集合对象(如…...
[算法日志]图论: 广度优先搜索(BFS)
[算法日志]图论: 广度优先搜索(BFS) 广度优先概论 广度优先遍历也是一种常用的遍历图的算法策略,其思想是将本节点相关联的节点都遍历一遍后才切换到相关联节点重复本操作。这种遍历方式类似于对二叉树节点的层序遍历,即先遍历完子节点后…...
Xilinx FPGA SPIx4 配置速度50M约束语句(Vivado开发环境)
qspi_50m.xdc文件: set_property BITSTREAM.GENERAL.COMPRESS TRUE [current_design] set_property BITSTREAM.CONFIG.SPI_BUSWIDTH 4 [current_design] set_property BITSTREAM.CONFIG.CONFIGRATE 50 [current_design] set_property CONFIG_VOLTAGE 3.3 [curren…...
Linux Shell和权限
目录 Shell命令及运行原理 权限 1.文件基本属性 2.文件权限值的表示方法 3.文件访问权限的相关设置方法 3.(1)chmod 组名修改 3.(2)chmod 二进制修改 3.(3)chown 3.(4)chgrp 3.(5)umask 4.目录权限 Shell命令及运行原理 Linux的操作系统,狭义上是…...
Git同时配置Gitee和GitHub
Git同时配置Gitee和GitHub 一、删除原先ssh密钥二、生成密钥 这里的同时配置是针对于之前配置过单个gitee或者github而言的,如果需要看git从安装开始的配置,则可以看这一篇文章 git安装配置教程 一、删除原先ssh密钥 在C盘下用户/用户名/.ssh文件下找到…...
IGP高级特性简要介绍(OSPF-上篇)
OSPF高级特性 一、OSPF_提升故障收敛及网络恢复速度 1.FRR与BFD快速恢复故障 1.1 FRR 在传统转发模式下,当到达同一个目的网络存在多条路由时,路由器总是选择最优路由使用,并且下发到FIB表指导数据转发。 当最优路由故障时,需…...
Oracle-Ogg集成模式降级为经典模式步骤
前言: Ogg集成模式降级为经典模式的场景比较少,因为降级为经典模式会导致无法支持压缩表同步,XA事务,多线程模式,PDB模式同步等功能,除非遇到集成模式暂时无法解决的bug或者环境不支持集成模式,比如DG备库环…...
链表面试OJ题(1)
今天讲解两道链表OJ题目。 1.链表的中间节点 给你单链表的头结点 head ,请你找出并返回链表的中间结点。 如果有两个中间结点,则返回第二个中间结点。 示例 输入:head [1,2,3,4,5] 输出:[3,4,5] 解释:链表只有一个…...
[极客大挑战 2019]Upload 1
题目环境: 根据题目和环境可知此题目是一道文件上传漏洞 编写一句话木马脚本<?php eval($_POST[shell]);?>将脚本文件更改为jpg图片文件我这里是flag.jpg上传文件并burpsuite抓包Repeater重放 报错一句话木马里面有<?字符 换一种一句话木马继续编写木马…...
OpenFeign讲解+面试题
一:OpenFeign是什么? 是一个声明式的web客户端,只需要创建一个接口,添加注解即可完成微服务之间的调用 二:调用微服务的方式? ribbon restTemplate方式调用openFeign通过接口注解的方式调用 三:如何使用OpenFeign&…...
嬴图 | LLM+Graph:大语言模型与图数据库技术的协同
前言 2022年11月以来,大语言模型席卷全球,在自然语言任务中表现卓越。尽管存在一系列伦理、安全等方面的担心,但各界对该技术的热情和关注并未减弱。 本文不谈智能伦理方面的问题,仅集中于Ulitpa嬴图在应用中的一些探索与实践&a…...
微信小程序下载文件和转发文件给好友总结
这段时间公司让我负责小程序的一些功能开发,回想上次开发小程序还是在上一次,这次开发小程序主要实现的功能就是转发文件给好友和下载文件,总结一下这次遇到的各种问题和解决方法。 下载文件 首先正常下载 wx.downloadFile({url: https://img.haihaina.cn/月度支出表.xls,…...
一文掌握 Apache SkyWalking
Apache SkyWalking SkyWalking是一个开源可观测平台,用于收集、分析、聚合和可视化来自服务和云原生基础设施的数据。SkyWalking 提供了一种简单的方法来保持分布式系统的清晰视图,甚至跨云。它是一种现代APM,专为云原生、基于容器的分布式系…...
外贸网站优化常用流程和一些常识
外贸网站google排名,总以为是单个网页标签的优化过程。 显然,这些观点都是错误的,九凌网络是做谷歌优化服务,九凌网络跟大家分享外贸网站Google优化常用流程和一些常识需要做以下几个步骤: 第一步:网站诊断࿰…...
Hive的时间操作函数
目录 前言函数使用介绍实际使用判断该天是星期几判断该天对应的周(包含一周开始和结束) 前言 hive 里面的时间函数有很多,今天单讲dayofweek函数,背景:有时候不仅要出日报,还要出周报,需要很多…...
线程与协程
1. 线程与协程 1.1. “函数调用级别”的切换、上下文切换 1. 函数调用级别的切换 “函数调用级别的切换”是指:像函数调用/返回一样轻量地完成任务切换。 举例说明: 当你在程序中写一个函数调用: funcA() 然后 funcA 执行完后返回&…...
基于当前项目通过npm包形式暴露公共组件
1.package.sjon文件配置 其中xh-flowable就是暴露出去的npm包名 2.创建tpyes文件夹,并新增内容 3.创建package文件夹...
视频字幕质量评估的大规模细粒度基准
大家读完觉得有帮助记得关注和点赞!!! 摘要 视频字幕在文本到视频生成任务中起着至关重要的作用,因为它们的质量直接影响所生成视频的语义连贯性和视觉保真度。尽管大型视觉-语言模型(VLMs)在字幕生成方面…...
第 86 场周赛:矩阵中的幻方、钥匙和房间、将数组拆分成斐波那契序列、猜猜这个单词
Q1、[中等] 矩阵中的幻方 1、题目描述 3 x 3 的幻方是一个填充有 从 1 到 9 的不同数字的 3 x 3 矩阵,其中每行,每列以及两条对角线上的各数之和都相等。 给定一个由整数组成的row x col 的 grid,其中有多少个 3 3 的 “幻方” 子矩阵&am…...
vue3+vite项目中使用.env文件环境变量方法
vue3vite项目中使用.env文件环境变量方法 .env文件作用命名规则常用的配置项示例使用方法注意事项在vite.config.js文件中读取环境变量方法 .env文件作用 .env 文件用于定义环境变量,这些变量可以在项目中通过 import.meta.env 进行访问。Vite 会自动加载这些环境变…...
代码随想录刷题day30
1、零钱兑换II 给你一个整数数组 coins 表示不同面额的硬币,另给一个整数 amount 表示总金额。 请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额,返回 0 。 假设每一种面额的硬币有无限个。 题目数据保证结果符合 32 位带…...
推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材)
推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材) 这个项目能干嘛? 使用 gemini 2.0 的 api 和 google 其他的 api 来做衍生处理 简化和优化了文生图和图生图的行为(我的最主要) 并且有一些目标检测和切割(我用不到) 视频和 imagefx 因为没 a…...
基于SpringBoot在线拍卖系统的设计和实现
摘 要 随着社会的发展,社会的各行各业都在利用信息化时代的优势。计算机的优势和普及使得各种信息系统的开发成为必需。 在线拍卖系统,主要的模块包括管理员;首页、个人中心、用户管理、商品类型管理、拍卖商品管理、历史竞拍管理、竞拍订单…...
为什么要创建 Vue 实例
核心原因:Vue 需要一个「控制中心」来驱动整个应用 你可以把 Vue 实例想象成你应用的**「大脑」或「引擎」。它负责协调模板、数据、逻辑和行为,将它们变成一个活的、可交互的应用**。没有这个实例,你的代码只是一堆静态的 HTML、JavaScript 变量和函数,无法「活」起来。 …...
MySQL 索引底层结构揭秘:B-Tree 与 B+Tree 的区别与应用
文章目录 一、背景知识:什么是 B-Tree 和 BTree? B-Tree(平衡多路查找树) BTree(B-Tree 的变种) 二、结构对比:一张图看懂 三、为什么 MySQL InnoDB 选择 BTree? 1. 范围查询更快 2…...
