pytorch复现_UNet
什么是UNet
U-Net由收缩路径和扩张路径组成。收缩路径是一系列卷积层和汇集层,其中要素地图的分辨率逐渐降低。扩展路径是一系列上采样层和卷积层,其中特征地图的分辨率逐渐增加。
在扩展路径中的每一步,来自收缩路径的对应特征地图与当前特征地图级联。

主干结构解析
左边为特征提取网络(编码器),右边为特征融合网络(解码器)
高分辨率—编码—低分辨率—解码—高分辨率
特征提取网络
高分辨率—编码—低分辨率
前半部分是编码, 它的作用是特征提取(获取局部特征,并做图片级分类),得到抽象语义特征
由两个3x3的卷积层(RELU)再加上一个2x2的maxpooling层组成一个下采样的模块,一共经过4次这样的操作
特征融合网络
低分辨率—解码—高分辨率
利用前面编码的抽象特征来恢复到原图尺寸的过程, 最终得到分割结果(掩码图片)
代码:
import torch.nn as nn
import torch# 编码器(论文中称之为收缩路径)的基本单元
def contracting_block(in_channels, out_channels):block = torch.nn.Sequential(# 这里的卷积操作没有使用padding,所以每次卷积后图像的尺寸都会减少2个像素大小nn.Conv2d(kernel_size=(3, 3), in_channels=in_channels, out_channels=out_channels),nn.BatchNorm2d(out_channels),nn.ReLU(),nn.Conv2d(kernel_size=(3, 3), in_channels=out_channels, out_channels=out_channels),nn.BatchNorm2d(out_channels),nn.ReLU())return block# 解码器(论文中称之为扩张路径)的基本单元
class expansive_block(nn.Module):def __init__(self, in_channels, mid_channels, out_channels):super(expansive_block, self).__init__()# 每进行一次反卷积,通道数减半,尺寸扩大2倍self.up = nn.ConvTranspose2d(in_channels, in_channels // 2, kernel_size=(3, 3), stride=2, padding=1,output_padding=1)self.block = nn.Sequential(# 这里的卷积操作没有使用padding,所以每次卷积后图像的尺寸都会减少2个像素大小nn.Conv2d(kernel_size=(3, 3), in_channels=in_channels, out_channels=mid_channels),nn.BatchNorm2d(mid_channels),nn.ReLU(),nn.Conv2d(kernel_size=(3, 3), in_channels=mid_channels, out_channels=out_channels),nn.BatchNorm2d(out_channels),nn.ReLU())def forward(self, e, d):d = self.up(d)# concat# e是来自编码器部分的特征图,d是来自解码器部分的特征图,它们的形状都是[B,C,H,W]diffY = e.size()[2] - d.size()[2]diffX = e.size()[3] - d.size()[3]# 裁剪时,先计算e与d在高和宽方向的差距diffY和diffX,然后对e高方向进行裁剪,具体方法是两边分别裁剪diffY的一半,# 最后对e宽方向进行裁剪,具体方法是两边分别裁剪diffX的一半,# 具体的裁剪过程见下图一e = e[:, :, diffY // 2:e.size()[2] - diffY // 2, diffX // 2:e.size()[3] - diffX // 2]cat = torch.cat([e, d], dim=1) # 在特征通道上进行拼接out = self.block(cat)return out# 最后的输出卷积层
def final_block(in_channels, out_channels):block = nn.Conv2d(kernel_size=(1, 1), in_channels=in_channels, out_channels=out_channels)return blockclass UNet(nn.Module):def __init__(self, in_channel, out_channel):super(UNet, self).__init__()# 编码器 (Encode)self.conv_encode1 = contracting_block(in_channels=in_channel, out_channels=64)self.conv_pool1 = nn.MaxPool2d(kernel_size=2, stride=2)self.conv_encode2 = contracting_block(in_channels=64, out_channels=128)self.conv_pool2 = nn.MaxPool2d(kernel_size=2, stride=2)self.conv_encode3 = contracting_block(in_channels=128, out_channels=256)self.conv_pool3 = nn.MaxPool2d(kernel_size=2, stride=2)self.conv_encode4 = contracting_block(in_channels=256, out_channels=512)self.conv_pool4 = nn.MaxPool2d(kernel_size=2, stride=2)# 编码器与解码器之间的过渡部分(Bottleneck)self.bottleneck = nn.Sequential(nn.Conv2d(kernel_size=(3, 3), in_channels=512, out_channels=1024),nn.BatchNorm2d(1024),nn.ReLU(),nn.Conv2d(kernel_size=(3, 3), in_channels=1024, out_channels=1024),nn.BatchNorm2d(1024),nn.ReLU())# 解码器(Decode)self.conv_decode4 = expansive_block(1024, 512, 512)self.conv_decode3 = expansive_block(512, 256, 256)self.conv_decode2 = expansive_block(256, 128, 128)self.conv_decode1 = expansive_block(128, 64, 64)self.final_layer = final_block(64, out_channel)def forward(self, x):# Encodeencode_block1 = self.conv_encode1(x)encode_pool1 = self.conv_pool1(encode_block1)encode_block2 = self.conv_encode2(encode_pool1)encode_pool2 = self.conv_pool2(encode_block2)encode_block3 = self.conv_encode3(encode_pool2)encode_pool3 = self.conv_pool3(encode_block3)encode_block4 = self.conv_encode4(encode_pool3)encode_pool4 = self.conv_pool4(encode_block4)# Bottleneckbottleneck = self.bottleneck(encode_pool4)# Decodedecode_block4 = self.conv_decode4(encode_block4, bottleneck)decode_block3 = self.conv_decode3(encode_block3, decode_block4)decode_block2 = self.conv_decode2(encode_block2, decode_block3)decode_block1 = self.conv_decode1(encode_block1, decode_block2)final_layer = self.final_layer(decode_block1)return final_layerif __name__ == '__main__':image = torch.rand((1, 3, 572, 572))unet = UNet(in_channel=3, out_channel=2)mask = unet(image)print(mask.shape)#输出结果:torch.Size([1, 2, 388, 388])相关文章:
pytorch复现_UNet
什么是UNet U-Net由收缩路径和扩张路径组成。收缩路径是一系列卷积层和汇集层,其中要素地图的分辨率逐渐降低。扩展路径是一系列上采样层和卷积层,其中特征地图的分辨率逐渐增加。 在扩展路径中的每一步,来自收缩路径的对应特征地图与当前特征…...
定岗定编设计:企业职能部门定岗定编设计项目成功案例
一、客户背景及现状分析 某大型车辆公司隶属于某央企集团,建于20世纪60年代,是中国高速、重载、专用铁路车辆生产经营的优势企业,轨道车辆制动机研发制造的主导企业,是隶属于国内最大的轨道交通设备制造上市企业的骨干二级公司。公…...
鸿蒙原生应用开发-DevEco Studio本地模拟器的使用
使用Local Emulator运行应用/服务 DevEco Studio提供的Local Emulator可以运行和调试Phone、TV和Wearable设备的HarmonyOS应用/服务。在Local Emulator上运行应用/服务兼容签名与不签名两种类型的HAP。 Local Emulator相比于Remote Emulator的区别:Local Emulator是…...
QT blockingFilter blockingMap blockingMapped
blockingFilter 主要作用是筛选出符合条件的项值结果集,并与之替换原有序列列表 blockingMap 可以直接修改容器的每一项 blockingMapped 不直接修改容器的每一项,而是将处理后的结果返回一个新的容器 blockingMappedReduced ResultType QtConcurrent::blockingMappedRed…...
【ARFoundation学习笔记】平面检测
写在前面的话 本系列笔记旨在记录作者在学习Unity中的AR开发过程中需要记录的问题和知识点。难免出现纰漏,更多详细内容请阅读原文。 文章目录 平面检测属性可视化平面平面检测的开关控制显示与隐藏已检测平面 平面检测属性 AR中检测平面的原理:AR Fou…...
Python---ljust()--左对齐、rjust()--右对齐、center()--居中对齐
作用:返回原字符串左对齐、右对齐以及居中对齐,不足的使用 指定字符 进行填充。 ljust 左对齐 rjust 右对齐 center 居中对齐 类似于Excel、Word文档中的对齐。 基本语法: 字符串序列.ljust(长度, 填充字符) 案例: …...
spdk用户态块层详解
先通过回顾内核态的通用块层来详细介绍SPDK通用块层,包括通用块层的架构、核心数据结构、数据流方面的考量等。最后描述基于通用块层之上的两个特性:一是逻辑卷的支持,基于通用块设备的Blobstore和各种逻辑卷的特性,精简配置&…...
双通道 H 桥电机驱动芯片AT8833,软硬件兼容替代DRV8833,应用玩具、打印机等应用
上期小编给大家分享了单通道 H 桥电机驱动芯片,现在来讲一讲双通道的驱动芯片。 双通道 H 桥电机驱动芯片能通过控制电机的正反转、速度和停止等功能,实现对电机的精确控制。下面介绍双通道H桥电机驱动芯片的工作原理和特点。 一、工作原理 双通道 H 桥电…...
WPF布局与控件分类
Refer:WPF从假入门到真的入门 - 知乎 (zhihu.com) Refer:WPF从假入门到真的入门 - 知乎 (zhihu.com) https://www.zhihu.com/column/c_1397867519101755392 https://blog.csdn.net/qq_44034384/article/details/106154954 https://www.cnblogs.com/mq0…...
复杂逻辑的开发利器—Mendix快速实现AQL质量抽检
Mendix低代码开发平台适用于复杂的业务逻辑场景,这句话大家早有耳闻,本期小编就为您打开智慧之光,仅从AQL小侧面,来管窥一二——Mendix如何形成第五代编程语言,来完成数据逻辑与建模、业务算法逻辑与建模的。ÿ…...
RFID系统
目录 在物联网应用中有三项关键技术 读写器 电子标签 工作原理 阅读器的组成及作用: 电子标签的组成及作用: RFID系统的组成 接口方式 在物联网应用中有三项关键技术 在物联网应用中有三项关键技术 1、传感器技术:这也是计算机应用中…...
Markov Chain Fingerprinting to Classify Encrypted Traffic 论文笔记
0.Abstract 在本文中,提出了用于SSL/TLS会话中传输的应用程序流量的随机指纹。这个指纹基于一阶齐次马尔可夫链,模型识别应用程序的准确率,并提供了检测异常对话的可能性。 1.Introduction 通过SSL/TLS会话时的头部信息创建统计指纹ÿ…...
vue 跨标签页的数据共享(即跨标签页通信)
跨标签页通信的常见方案 LocalStorage 或 SessionStorage BroadCast Channel Service Worker Shared Worker Window.postMessage() Cookies IndexedDB 什么是跨标签页通信? 指在同一个浏览器窗口中的多个标签页之间进行数据交流和信息传递的过程。通常情况…...
什么是拉宾-斯科特定理?
拉宾-斯科特定理(Rabin-Scott theorem )是数学上最深刻的数学结果之一。拉宾-斯科特定理是人们最喜欢的计算机科学概念之一。 当正确理解拉宾-斯科特定理时,它会以一种相当基本的方式改变你对现实的看法。然而,它典型的教科书式的呈现方式掩盖了这种深…...
Java并发编程第11讲——AQS设计思想及核心源码分析
Java并发包(JUC)中提供了很多并发工具,比如前面介绍过的ReentrantLock、ReentrantReadWriteLock、CountDownLatch、Semaphore、FutureTask等锁或者同步部件,它们的实现都用到了一个共同的基类——AbstractQueuedSynchronizer&…...
什么是数据库?数据库有哪些基本分类和主要特点?
数据库是以某种有组织的方式存储的数据集合。本文从数据库的基本概念出发,详细解读了数据库的主要类别和基本特点,并就大模型时代备受瞩目的数据库类型——向量数据库进行了深度剖析,供大家在了解数据库领域的基本概念时起到一点参考作用。 …...
flutter显示出底部控件的引导页
需求:同一个页面的两个不同的入口,同一个控件的位置有变化,显示引导页时对应这个控件的引导内容的位置也需要改变;同时半透明底部显示出真实的页面内容。 这样的需要如果切图然后再往页面上贴位置无法精确的对准。 思路࿱…...
常用设计模式——模板方法模式
什么是模板方法模式 模板方法模式:定义一个操作中的算法的骨架,而将一些步骤延迟到子类中。模板方法使得子类可以不改变一个算法的结构即可重定义该算法的某些特定步骤。 主要解决:一些方法通用,却要在每一个子类都重写这些方法…...
idea使用git删除本地提交(未推送)
1、找到reset head 2、打开弹窗,在HEAD后面输入^ 结果为HEAD^ 注释: Reset Type 有三种: Mixed(默认方式),保留本地源码,回退 commit 和 index 信息,最常用的方式Soft 回退到某个版本…...
centos 7部署Mysql8.0主从
Mysql官网中关于部署主从的网址 环境准备: 搭建虚拟机和安装Mysql之前的文章中已经涉及,在此不再赘述。 主从IPMysql账号密码主192.168.213.4root/Root1234!从192.168.213.5root/Root1234! 1、主数据库设置 配置my.cnf 一般存放于/etc/。 主从配…...
零门槛NAS搭建:WinNAS如何让普通电脑秒变私有云?
一、核心优势:专为Windows用户设计的极简NAS WinNAS由深圳耘想存储科技开发,是一款收费低廉但功能全面的Windows NAS工具,主打“无学习成本部署” 。与其他NAS软件相比,其优势在于: 无需硬件改造:将任意W…...
Appium+python自动化(十六)- ADB命令
简介 Android 调试桥(adb)是多种用途的工具,该工具可以帮助你你管理设备或模拟器 的状态。 adb ( Android Debug Bridge)是一个通用命令行工具,其允许您与模拟器实例或连接的 Android 设备进行通信。它可为各种设备操作提供便利,如安装和调试…...
线程同步:确保多线程程序的安全与高效!
全文目录: 开篇语前序前言第一部分:线程同步的概念与问题1.1 线程同步的概念1.2 线程同步的问题1.3 线程同步的解决方案 第二部分:synchronized关键字的使用2.1 使用 synchronized修饰方法2.2 使用 synchronized修饰代码块 第三部分ÿ…...
基础测试工具使用经验
背景 vtune,perf, nsight system等基础测试工具,都是用过的,但是没有记录,都逐渐忘了。所以写这篇博客总结记录一下,只要以后发现新的用法,就记得来编辑补充一下 perf 比较基础的用法: 先改这…...
苍穹外卖--缓存菜品
1.问题说明 用户端小程序展示的菜品数据都是通过查询数据库获得,如果用户端访问量比较大,数据库访问压力随之增大 2.实现思路 通过Redis来缓存菜品数据,减少数据库查询操作。 缓存逻辑分析: ①每个分类下的菜品保持一份缓存数据…...
数据库分批入库
今天在工作中,遇到一个问题,就是分批查询的时候,由于批次过大导致出现了一些问题,一下是问题描述和解决方案: 示例: // 假设已有数据列表 dataList 和 PreparedStatement pstmt int batchSize 1000; // …...
什么?连接服务器也能可视化显示界面?:基于X11 Forwarding + CentOS + MobaXterm实战指南
文章目录 什么是X11?环境准备实战步骤1️⃣ 服务器端配置(CentOS)2️⃣ 客户端配置(MobaXterm)3️⃣ 验证X11 Forwarding4️⃣ 运行自定义GUI程序(Python示例)5️⃣ 成功效果
注:当前使用的是 ol 5.3.0 版本,天地图使用的key请到天地图官网申请,并替换为自己的key 地图分屏对比在WebGIS开发中是很常见的功能,和卷帘图层不一样的是,分屏对比是在各个地图中添加相同或者不同的图层进行对比查看。…...
LangChain知识库管理后端接口:数据库操作详解—— 构建本地知识库系统的基础《二》
这段 Python 代码是一个完整的 知识库数据库操作模块,用于对本地知识库系统中的知识库进行增删改查(CRUD)操作。它基于 SQLAlchemy ORM 框架 和一个自定义的装饰器 with_session 实现数据库会话管理。 📘 一、整体功能概述 该模块…...
Windows安装Miniconda
一、下载 https://www.anaconda.com/download/success 二、安装 三、配置镜像源 Anaconda/Miniconda pip 配置清华镜像源_anaconda配置清华源-CSDN博客 四、常用操作命令 Anaconda/Miniconda 基本操作命令_miniconda创建环境命令-CSDN博客...
