当前位置: 首页 > news >正文

SLAM从入门到精通(被忽视的基础图像处理)

【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing @163.com】

        工业上用激光slam的多,用视觉slam的少,这是大家都知道的常识。毕竟对于工业来说,健壮和稳定是我们必须要考虑的事情。但是图像slam在这过程当中其实也可以扮演十分重要的角色,比如说地面如果非常有特征的话,黄色路面或者绿色路面。这个时候,即使全局的slam完成不了,那么也可以实现局部道路的slam导航。

        ros里面其实也谈到了opencv,它是一个用的比较多的开发库。但是很多时候,上面的demo都是比较割裂的,很难说这是用于实际场景的代码。比如说,平时比较常用的二维码导航,上面就谈的不是很多。所以,对于这些知识点,我们都可以自己编写opencv程序来解决。

        目前在ubuntu20.04上面,ros noetic版本自带的是opencv 4版本了,这个需要注意下了。另外,实际图像开发的时候,光源很重要。如果光源不满足条件,可以自己编写代码,比如利用最大灰度值做pwm的pid反馈参考量,这都是有实际意义的。

1、编写测试代码

        这段代码来自于网上。主要还是为了说明opencv如何编写代码,有兴趣的同学可以去买一本opencv的书来进行学习和研究。

#include <opencv4/opencv2/highgui/highgui.hpp>
#include <opencv4/opencv2/imgcodecs/legacy/constants_c.h>
#include <iostream>
using namespace std;int main( int argc, char** argv ) {cv::Mat image;image = cv::imread("test.jpg" , CV_LOAD_IMAGE_COLOR);	      if(! image.data ) {std::cout <<  "Could not open or find the image" << std::endl ;return -1;}std::cout << "image wide: "<< image.cols << ",image high: " << image.rows << ",image channels: "<< image.channels() << std::endl;/* display imagecv::namedWindow( "Display window", cv::WINDOW_AUTOSIZE );cv::imshow( "Display window", image );		    cv::waitKey(0);*/size_t y,x;// y is row, x is colint c;     // c is channely = x = 250;c = 2;// row_ptr is the head point of y rowunsigned char *row_ptr = image.ptr<unsigned char>(y);// data_ptr points to pixel dataunsigned char *data_ptr = &row_ptr[x * image.channels()]; unsigned char data =  data_ptr[c];// use cv::Mat::at() to get the pixel value// unsigned char is not printable// std::cout << std::isprint(data)<<std::isprint(image.at<cv::Vec3b>(y,x)[c]) << std::endl;std::cout << "pixel value at y, x ,c"<<static_cast<unsigned>(image.at<cv::Vec3b>(y,x)[c]) << std::endl;return 0;
}

2、代码说明

        代码的内容不复杂,主要就是打开一幅图片,然后获取指定点的像素信息。当然,这份代码只是起到抛砖引玉的作用,真正用起来,还需要和具体的场景关联起来。

3、编译方法

        前面我们说过,ros noetic里面支持的是opencv 4,所以这里代码也是用opencv4的库进行编译的,输入如下所示,

g++ test.cpp -o test `pkg-config --cflags --libs opencv4`

4、测试和调试

        代码测试的过程中,还需要一张图片,我们不妨去网上搜索一下lena的图片。她也是数字图像处理中用的最多的一张图片,

        这样程序和图片都准备好了,执行后不出意外的话,就可以看到这样的打印,

shell$ ./test
image wide: 500,image high: 500,image channels: 3
pixel value at y, x ,c177

5、python3实现图像处理

        实际生产中,一般是用python编写好算法之后,再转换成c/c++代码,这样效率要高很多。另外,不管是windows平台,还是linux平台,使用python都是很方便的。

import cv2def main():picture = cv2.imread('./test.jpg')cv2.imshow('lena', picture)cv2.waitKey(0)cv2.destroyAllWindows()if __name__ == '__main__':main()

        运行的方法,也比较简单,直接输入python3 ./test.py即可。

相关文章:

SLAM从入门到精通(被忽视的基础图像处理)

【 声明&#xff1a;版权所有&#xff0c;欢迎转载&#xff0c;请勿用于商业用途。 联系信箱&#xff1a;feixiaoxing 163.com】 工业上用激光slam的多&#xff0c;用视觉slam的少&#xff0c;这是大家都知道的常识。毕竟对于工业来说&#xff0c;健壮和稳定是我们必须要考虑的…...

【C++】继承详解

本篇要分享的内容是关于继承的内容哼哼哼啊啊啊啊啊啊啊啊啊啊啊啊啊啊 以下为本篇目录 目录 1.简单了解继承 2.继承的简单定义 3.继承简单使用 4.继承方式 4.1基类的privat 4.2基类的protected 4.3不可见与private的区别 5.父子类对象赋值转换 6.继承的作用域 7.子…...

react:swr接口缓存

useSWR 是一个 React Hooks&#xff0c;是 HTTP 缓存库 SWR 的核心方法之一。SWR 是一个轻量级的 React Hooks 库&#xff0c;通过自动缓存数据来实现 React 的数据获取。 第一个参数是被缓存的数据的 key&#xff0c; 第二个参数是一个函数&#xff0c;该函数返回数据或者一个…...

2023-11 | 短视频批量下载/爬取某个用户的所有视频 | Python

这里以鞠婧祎的个人主页为demo https://www.douyin.com/user/MS4wLjABAAAACV5Em110SiusElwKlIpUd-MRSi8rBYyg0NfpPrqZmykHY8wLPQ8O4pv3wPL6A-oz 【2023-11-4 23:02:52 星期六】可能后面随着XX的调整, 方法不再适用, 请注意 找到接口 找到https://www.douyin.com/aweme/v1/web/…...

【JAVA学习笔记】66 - 本章作业(IO流)

项目代码 https://github.com/yinhai1114/Java_Learning_Code/tree/main/IDEA_Chapter19/src/com/yinhai/homework 1.使用File类和FileWriter类 (1)在判断e盘下是否有文件夹mytemp&#xff0c;如果没有就创建mytemp public class Homework01 {public static void main(String…...

vscode中 vue3+ts 项目的提示失效,volar插件失效问题解决方案

文章目录 前情提要bug回顾解决方案最后 前情提要 说起来很耻辱&#xff0c;从mac环境换到window环境&#xff0c;vscode的配置都是云端更新过来的&#xff0c;应该是一切正常才对&#xff0c;奇怪的是我的项目环境出现问题了&#xff0c;关于组件的ts和追踪都没有效果&#xff…...

Elasticsearch:在 ES|QL 中使用 DISSECT 和 GROK 进行数据处理

目录 DISSECT 还是 GROK&#xff1f; 或者两者兼而有之&#xff1f; 使用 DISSECT 处理数据 Dissect pattern 术语 例子 DISSECT 关键修饰符 右填充修饰符 (->) 附加修饰符 () 添加顺序修饰符&#xff08; 和 /n&#xff09; 命名的跳过键&#xff08;&#xff1f…...

基于自适应自回归模型的高级人工智能概念及其实现

基于自适应自回归模型的高级人工智能概念及其实现 摘要:一、引言:二、方法:三、讨论:四、结论:草稿实现计算摘要: 在人工智能研究领域中,预测未来的信息往往会遇到信息不明确的问题,尤其是在自回归模型中,这一问题尤为突出。本研究提出一个新颖的假设,将能自主解决信…...

windows的mysql启动错误,查看windows日志

1、点击左下角开始按钮&#xff0c;计算机上右键&#xff0c;点击【管理】。 2、在计算机管理界面依次找到【系统工具】&#xff0c;选择【时间查看器】&#xff0c;打开【windows日志】&#xff0c;点击【应用程序】 3、在右侧找到&#xff0c;最新的mysql错误信息。双击查看。…...

centos7部署Canal与Canal集成使用

1、简介 canal [kə’nl]&#xff0c;译意为水道/管道/沟渠&#xff0c;主要用途是基于 MySQL 数据库增量日志解析&#xff0c;提供增量数据订阅和消费 早期阿里巴巴因为杭州和美国双机房部署&#xff0c;存在跨机房同步的业务需求&#xff0c;实现方式主要是基于业务 trigge…...

C语言--分段函数--switch语句

如何用switch语句写分段函数呢&#xff1f;⭐️ 首先介绍一下switch语句的语法规则⭐️ switch(整形表达式) {case 常量表达式1&#xff1b; //标签必须唯一语句块1;break;case 常量表达式2&#xff1b; //if(a0),而case中时系统自动加语句块2&#xff1b;break&#xff1b;c…...

动态规划31(Leetcode188买卖股票的最佳时机4)

代码&#xff1a; 我的状态方程&#xff1a; buy[i][j]max{buy[i−1][j],sell[i−1][j-1]−price[i]} 题解里的&#xff1a; buy[i][j]max{buy[i−1][j],sell[i−1][j]−price[i]} ..没理解题解的 但我的通过了 class Solution {public int maxProfit(int k, int[] pric…...

npm包管理相关命令

前置条件&#xff0c;准备npm账号&#xff0c;并登录&#xff0c;npm login 或者 npm adduser &#xff08;这一行同样需要输入账号密码登录&#xff0c;之后就不用登录了&#xff09; 验证是否登录&#xff1a;npm whoami 还可以查看用户简介&#xff1a;npm profile get …...

2023年Q3乳品行业数据分析(乳品市场未来发展趋势)

随着人们生活水平的不断提高以及对健康生活的追求不断增强&#xff0c;牛奶作为优质蛋白和钙的补充品&#xff0c;市场需求逐年增加。 今年Q3&#xff0c;牛奶乳品市场仍呈增长趋势。根据鲸参谋电商数据分析平台的相关数据显示&#xff0c;2023年7月-9月&#xff0c;牛奶乳品市…...

软考 系统架构设计师系列知识点之边缘计算(2)

接前一篇文章&#xff1a;软考 系统架构设计师系列知识点之边缘计算&#xff08;1&#xff09; 所属章节&#xff1a; 第11章. 未来信息综合技术 第4节. 边缘计算概述 3. 边缘计算的特点 边缘计算是在靠近物或数据源头的网络边缘侧&#xff0c;融合网络、计算、存储、应用核心…...

Maven中的继承与聚合

一&#xff0c;继承 前面我们将项目拆分成各个小模块&#xff0c;但是每个小模块中有很多相同的依赖于是我们创建一个父工程将模块中相同的依赖定义在父工程中&#xff0c;然后子工程继承父工程Maven作用&#xff1a;简化依赖配置&#xff0c;统一依赖管理,可以实现多重继承像J…...

第三章 UI开发的点点滴滴

一、常用控件的使用方法 1.TextView android:gravity"center" 可选值&#xff1a;top、bottom、left、right、center等&#xff0c;可以用"|"来同时指定多个值&#xff0c;center表示文字在垂直和水平方向都居中 android:textSize 指定文字的大小&#…...

637. 二叉树的层平均值

描述 : 给定一个非空二叉树的根节点 root , 以数组的形式返回每一层节点的平均值。与实际答案相差 10-5 以内的答案可以被接受。 题目 : 637. 二叉树的层平均值 分析 : 这个题和前面的几个一样&#xff0c;只不过是每层都先将元素保存下来&#xff0c;最后求平均就行了: 解…...

【Java笔试强训】Day9(CM72 另类加法、HJ91 走方格的方案数)

CM72 另类加法 链接&#xff1a;另类加法 题目&#xff1a; 给定两个int A和B。编写一个函数返回AB的值&#xff0c;但不得使用或其他算数运算符。 题目分析&#xff1a; 代码实现&#xff1a; package Day9;public class Day9_1 {public int addAB(int A, int B) {// wr…...

django REST框架- Django-ninja

Django 是我学习的最早的web框架&#xff0c;大概在2014年&#xff0c;当时选他原因也很简单就是网上资料比较丰富&#xff0c;自然是遇到问题更容易找答案&#xff0c;直到 2018年真正开始拿django做项目&#xff0c;才对他有了更全面的了解。他是一个入门有门槛&#xff0c;学…...

【网络】每天掌握一个Linux命令 - iftop

在Linux系统中&#xff0c;iftop是网络管理的得力助手&#xff0c;能实时监控网络流量、连接情况等&#xff0c;帮助排查网络异常。接下来从多方面详细介绍它。 目录 【网络】每天掌握一个Linux命令 - iftop工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景…...

XCTF-web-easyupload

试了试php&#xff0c;php7&#xff0c;pht&#xff0c;phtml等&#xff0c;都没有用 尝试.user.ini 抓包修改将.user.ini修改为jpg图片 在上传一个123.jpg 用蚁剑连接&#xff0c;得到flag...

Leetcode 3576. Transform Array to All Equal Elements

Leetcode 3576. Transform Array to All Equal Elements 1. 解题思路2. 代码实现 题目链接&#xff1a;3576. Transform Array to All Equal Elements 1. 解题思路 这一题思路上就是分别考察一下是否能将其转化为全1或者全-1数组即可。 至于每一种情况是否可以达到&#xf…...

【JVM】- 内存结构

引言 JVM&#xff1a;Java Virtual Machine 定义&#xff1a;Java虚拟机&#xff0c;Java二进制字节码的运行环境好处&#xff1a; 一次编写&#xff0c;到处运行自动内存管理&#xff0c;垃圾回收的功能数组下标越界检查&#xff08;会抛异常&#xff0c;不会覆盖到其他代码…...

从零实现STL哈希容器:unordered_map/unordered_set封装详解

本篇文章是对C学习的STL哈希容器自主实现部分的学习分享 希望也能为你带来些帮助~ 那咱们废话不多说&#xff0c;直接开始吧&#xff01; 一、源码结构分析 1. SGISTL30实现剖析 // hash_set核心结构 template <class Value, class HashFcn, ...> class hash_set {ty…...

解决本地部署 SmolVLM2 大语言模型运行 flash-attn 报错

出现的问题 安装 flash-attn 会一直卡在 build 那一步或者运行报错 解决办法 是因为你安装的 flash-attn 版本没有对应上&#xff0c;所以报错&#xff0c;到 https://github.com/Dao-AILab/flash-attention/releases 下载对应版本&#xff0c;cu、torch、cp 的版本一定要对…...

微信小程序云开发平台MySQL的连接方式

注&#xff1a;微信小程序云开发平台指的是腾讯云开发 先给结论&#xff1a;微信小程序云开发平台的MySQL&#xff0c;无法通过获取数据库连接信息的方式进行连接&#xff0c;连接只能通过云开发的SDK连接&#xff0c;具体要参考官方文档&#xff1a; 为什么&#xff1f; 因为…...

【C++从零实现Json-Rpc框架】第六弹 —— 服务端模块划分

一、项目背景回顾 前五弹完成了Json-Rpc协议解析、请求处理、客户端调用等基础模块搭建。 本弹重点聚焦于服务端的模块划分与架构设计&#xff0c;提升代码结构的可维护性与扩展性。 二、服务端模块设计目标 高内聚低耦合&#xff1a;各模块职责清晰&#xff0c;便于独立开发…...

【Oracle】分区表

个人主页&#xff1a;Guiat 归属专栏&#xff1a;Oracle 文章目录 1. 分区表基础概述1.1 分区表的概念与优势1.2 分区类型概览1.3 分区表的工作原理 2. 范围分区 (RANGE Partitioning)2.1 基础范围分区2.1.1 按日期范围分区2.1.2 按数值范围分区 2.2 间隔分区 (INTERVAL Partit…...

初探Service服务发现机制

1.Service简介 Service是将运行在一组Pod上的应用程序发布为网络服务的抽象方法。 主要功能&#xff1a;服务发现和负载均衡。 Service类型的包括ClusterIP类型、NodePort类型、LoadBalancer类型、ExternalName类型 2.Endpoints简介 Endpoints是一种Kubernetes资源&#xf…...