当前位置: 首页 > news >正文

九种分布式ID解决方案

文章目录

  • 背景
  • 1、UUID
  • 2、数据库自增ID
    • 2.1、主键表
    • 2.2、ID自增步长设置
  • 3、号段模式
  • 4、Redis INCR
  • 5、雪花算法
  • 6、美团(Leaf)
  • 7、百度(Uidgenerator)
  • 8、滴滴(TinyID)
  • 总结比较

背景

在复杂的分布式系统中,往往需要对大量的数据进行唯一标识,比如在对一个订单表进行了分库分表操作,这时候数据库的自增ID显然不能作为某个订单的唯一标识。除此之外还有其他分布式场景对分布式ID的一些要求:

  1. 趋势递增:由于多数RDBMS使用B-tree的数据结构来存储索引数据,在主键的选择上面我们应该尽量使用有序的主键保证写入性能。
  2. 单调递增:保证下一个ID一定大于上一个ID,例如排序需求。
  3. 信息安全:如果ID是连续的,恶意用户的扒取工作就非常容易做了;如果是订单号就更危险了,可以直接知道我们的单量。所以在一些应用场景下,会需要ID无规则、不规则。

就不同的场景及要求,市面诞生了很多分布式ID解决方案。本文针对多个分布式ID解决方案进行介绍,包括其优缺点、使用场景及代码示例。

1、UUID

UUID(Universally Unique Identifier)是基于当前时间、计数器(counter)和硬件标识(通常为无线网卡的MAC地址)等数据计算生成的。包含32个16进制数字,以连字号分为五段,形式为8-4-4-4-12的36个字符,可以生成全球唯一的编码并且性能高效。

JDK提供了UUID生成工具,代码如下:

import java.util.UUID;public class Test {public static void main(String[] args) {System.out.println(UUID.randomUUID());}
}

输出如下

b0378f6a-eeb7-4779-bffe-2a9f3bc76380

UUID完全可以满足分布式唯一标识,但是在实际应用过程中一般不采用,有如下几个原因:

  1. 存储成本高:UUID太长,16字节128位,通常以36长度的字符串表示,很多场景不适用。
  2. 信息不安全:基于MAC地址生成的UUID算法会暴露MAC地址,曾经梅丽莎病毒的制造者就是根据UUID寻找的。
  3. 不符合MySQL主键要求:MySQL官方有明确的建议主键要尽量越短越好,因为太长对MySQL索引不利:如果作为数据库主键,在InnoDB引擎下,UUID的无序性可能会引起数据位置频繁变动,严重影响性能。

2、数据库自增ID

利用Mysql的特性ID自增,可以达到数据唯一标识,但是分库分表后只能保证一个表中的ID的唯一,而不能保证整体的ID唯一。为了避免这种情况,我们有以下两种方式解决该问题。

2.1、主键表

通过单独创建主键表维护唯一标识,作为ID的输出源可以保证整体ID的唯一。举个例子:

创建一个主键表

CREATE TABLE `unique_id`  (`id` bigint NOT NULL AUTO_INCREMENT,`biz` char(1) NOT NULL,PRIMARY KEY (`id`),UNIQUE KEY `biz` (`biz`)
) ENGINE = InnoDB AUTO_INCREMENT=1 DEFAULT CHARSET =utf8;

业务通过更新操作来获取ID信息,然后添加到某个分表中。

BEGIN;REPLACE INTO unique_id (biz) values ('o') ;
SELECT LAST_INSERT_ID();COMMIT;

image.png

2.2、ID自增步长设置

我们可以设置Mysql主键自增步长,让分布在不同实例的表数据ID做到不重复,保证整体的唯一。

如下,可以设置Mysql实例1步长为1,实例1步长为2。
image.png

查看主键自增的属性

show variables like '%increment%'

image.png
显然,这种方式在并发量比较高的情况下,如何保证扩展性其实会是一个问题。

3、号段模式

号段模式是当下分布式ID生成器的主流实现方式之一。其原理如下:

  1. 号段模式每次从数据库取出一个号段范围,加载到服务内存中。业务获取时ID直接在这个范围递增取值即可。
  2. 等这批号段ID用完,再次向数据库申请新号段,对max_id字段做一次update操作,新的号段范围是(max_id ,max_id +step]。
  3. 由于多业务端可能同时操作,所以采用版本号version乐观锁方式更新。

image.png

例如 (1,1000] 代表1000个ID,具体的业务服务将本号段生成1~1000的自增ID。表结构如下:

CREATE TABLE id_generator (id int(10) NOT NULL,max_id bigint(20) NOT NULL COMMENT '当前最大id',step int(20) NOT NULL COMMENT '号段的长度',biz_type    int(20) NOT NULL COMMENT '业务类型',version int(20) NOT NULL COMMENT '版本号,是一个乐观锁,每次都更新version,保证并发时数据的正确性',PRIMARY KEY (`id`)
) 

这种分布式ID生成方式不强依赖于数据库,不会频繁的访问数据库,对数据库的压力小很多。但同样也会存在一些缺点比如:服务器重启,单点故障会造成ID不连续。

4、Redis INCR

基于全局唯一ID的特性,我们可以通过Redis的INCR命令来生成全局唯一ID。
image.png

Redis分布式ID的简单案例

/***  Redis 分布式ID生成器*/
@Component
public class RedisDistributedId {@Autowiredprivate StringRedisTemplate redisTemplate;private static final long BEGIN_TIMESTAMP = 1659312000l;/*** 生成分布式ID* 符号位    时间戳[31位]  自增序号【32位】* @param item* @return*/public long nextId(String item){// 1.生成时间戳LocalDateTime now = LocalDateTime.now();// 格林威治时间差long nowSecond = now.toEpochSecond(ZoneOffset.UTC);// 我们需要获取的 时间戳 信息long timestamp = nowSecond - BEGIN_TIMESTAMP;// 2.生成序号 --》 从Redis中获取// 当前当前的日期String date = now.format(DateTimeFormatter.ofPattern("yyyy:MM:dd"));// 获取对应的自增的序号Long increment = redisTemplate.opsForValue().increment("id:" + item + ":" + date);return timestamp << 32 | increment;}}

同样使用Redis也有对应的缺点:ID 生成的持久化问题,如果Redis宕机了怎么进行恢复?

5、雪花算法

Snowflake,雪花算法是有Twitter开源的分布式ID生成算法,以划分命名空间的方式将64bit位分割成了多个部分,每个部分都有具体的不同含义,在Java中64Bit位的整数是Long类型,所以在Java中Snowflake算法生成的ID就是long来存储的。具体如下:

image.png

  • 第一部分:占用1bit,第一位为符号位,不适用
  • 第二部分:41位的时间戳,41bit位可以表示241个数,每个数代表的是毫秒,那么雪花算法的时间年限是(241)/(1000×60×60×24×365)=69年
  • 第三部分:10bit表示是机器数,即 2^ 10 = 1024台机器,通常不会部署这么多机器
  • 第四部分:12bit位是自增序列,可以表示2^12=4096个数,一秒内可以生成4096个ID,理论上snowflake方案的QPS约为409.6w/s

雪花算法案例代码:

public class SnowflakeIdWorker {// ==============================Fields===========================================/*** 开始时间截 (2020-11-03,一旦确定不可更改,否则时间被回调,或者改变,可能会造成id重复或冲突)*/private final long twepoch = 1604374294980L;/*** 机器id所占的位数*/private final long workerIdBits = 5L;/*** 数据标识id所占的位数*/private final long datacenterIdBits = 5L;/*** 支持的最大机器id,结果是31 (这个移位算法可以很快的计算出几位二进制数所能表示的最大十进制数)*/private final long maxWorkerId = -1L ^ (-1L << workerIdBits);/*** 支持的最大数据标识id,结果是31*/private final long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);/*** 序列在id中占的位数*/private final long sequenceBits = 12L;/*** 机器ID向左移12位*/private final long workerIdShift = sequenceBits;/*** 数据标识id向左移17位(12+5)*/private final long datacenterIdShift = sequenceBits + workerIdBits;/*** 时间截向左移22位(5+5+12)*/private final long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;/*** 生成序列的掩码,这里为4095 (0b111111111111=0xfff=4095)*/private final long sequenceMask = -1L ^ (-1L << sequenceBits);/*** 工作机器ID(0~31)*/private long workerId;/*** 数据中心ID(0~31)*/private long datacenterId;/*** 毫秒内序列(0~4095)*/private long sequence = 0L;/*** 上次生成ID的时间截*/private long lastTimestamp = -1L;//==============================Constructors=====================================/*** 构造函数**/public SnowflakeIdWorker() {this.workerId = 0L;this.datacenterId = 0L;}/*** 构造函数** @param workerId     工作ID (0~31)* @param datacenterId 数据中心ID (0~31)*/public SnowflakeIdWorker(long workerId, long datacenterId) {if (workerId > maxWorkerId || workerId < 0) {throw new IllegalArgumentException(String.format("worker Id can't be greater than %d or less than 0", maxWorkerId));}if (datacenterId > maxDatacenterId || datacenterId < 0) {throw new IllegalArgumentException(String.format("datacenter Id can't be greater than %d or less than 0", maxDatacenterId));}this.workerId = workerId;this.datacenterId = datacenterId;}// ==============================Methods==========================================/*** 获得下一个ID (该方法是线程安全的)** @return SnowflakeId*/public synchronized long nextId() {long timestamp = timeGen();//如果当前时间小于上一次ID生成的时间戳,说明系统时钟回退过这个时候应当抛出异常if (timestamp < lastTimestamp) {throw new RuntimeException(String.format("Clock moved backwards.  Refusing to generate id for %d milliseconds", lastTimestamp - timestamp));}//如果是同一时间生成的,则进行毫秒内序列if (lastTimestamp == timestamp) {sequence = (sequence + 1) & sequenceMask;//毫秒内序列溢出if (sequence == 0) {//阻塞到下一个毫秒,获得新的时间戳timestamp = tilNextMillis(lastTimestamp);}}//时间戳改变,毫秒内序列重置else {sequence = 0L;}//上次生成ID的时间截lastTimestamp = timestamp;//移位并通过或运算拼到一起组成64位的IDreturn ((timestamp - twepoch) << timestampLeftShift) //| (datacenterId << datacenterIdShift) //| (workerId << workerIdShift) //| sequence;}/*** 阻塞到下一个毫秒,直到获得新的时间戳** @param lastTimestamp 上次生成ID的时间截* @return 当前时间戳*/protected long tilNextMillis(long lastTimestamp) {long timestamp = timeGen();while (timestamp <= lastTimestamp) {timestamp = timeGen();}return timestamp;}/*** 返回以毫秒为单位的当前时间** @return 当前时间(毫秒)*/protected long timeGen() {return System.currentTimeMillis();}/*** 随机id生成,使用雪花算法** @return*/public static String getSnowId() {SnowflakeIdWorker sf = new SnowflakeIdWorker();String id = String.valueOf(sf.nextId());return id;}//=========================================Test=========================================/*** 测试*/public static void main(String[] args) {SnowflakeIdWorker idWorker = new SnowflakeIdWorker(0, 0);for (int i = 0; i < 1000; i++) {long id = idWorker.nextId();System.out.println(id);}}
}

雪花算法强依赖机器时钟,如果机器上时钟回拨,会导致发号重复。 通常通过记录最后使用时间处理该问题。

image.png

6、美团(Leaf)

由美团开发,开源项目链接:https://github.com/Meituan-Dianping/Leaf

Leaf同时支持号段模式和snowflake算法模式,可以切换使用。

  • snowflake模式依赖于ZooKeeper,不同于原始snowflake算法也主要是在workId的生成上,Leaf中workId是基于ZooKeeper的顺序Id来生成的,每个应用在使用Leaf-snowflake时,启动时都会都在Zookeeper中生成一个顺序Id,相当于一台机器对应一个顺序节点,也就是一个workId。

  • 号段模式是对直接用数据库自增ID充当分布式ID的一种优化,减少对数据库的频率操作。相当于从数据库批量的获取自增ID,每次从数据库取出一个号段范围,例如 (1,1000] 代表1000个ID,业务服务将号段在本地生成1~1000的自增ID并加载到内存。

7、百度(Uidgenerator)

源码地址:https://github.com/baidu/uid-generator

中文文档地址:https://github.com/baidu/uid-generator/blob/master/README.zh_cn.md

UidGenerator是百度开源的Java语言实现,基于Snowflake算法的唯一ID生成器。它是分布式的,并克服了雪花算法的并发限制。单个实例的QPS能超过6000000。需要的环境:JDK8+,MySQL(用于分配WorkerId)。

百度的Uidgenerator对结构做了部分的调整,具体如下:

image.png

时间部分只有28位,这就意味着UidGenerator默认只能承受8.5年(2^28-1/86400/365),不过UidGenerator可以适当调整delta seconds、worker node id和sequence占用位数。

8、滴滴(TinyID)

由滴滴开发,开源项目链接:https://github.com/didi/tinyid

Tinyid是在美团(Leaf)的leaf-segment算法基础上升级而来,不仅支持了数据库多主节点模式,还提供了tinyid-client客户端的接入方式,使用起来更加方便。但和美团(Leaf)不同的是,Tinyid只支持号段一种模式不支持雪花模式。Tinyid提供了两种调用方式,一种基于Tinyid-server提供的http方式,另一种Tinyid-client客户端方式。

总结比较

优点缺点
UUID代码实现简单、没有网络开销,性能好占用空间大、无序
数据库自增ID利用数据库系统的功能实现,成本小、ID自增有序并发性能受Mysql限制、强依赖DB,当DB异常时整个系统不可用,致命
Redis INCR性能优于数据库、ID有序解决单点问题带来的数据一致性等问题使得复杂度提高
雪花算法不依赖数据库等第三方系统,性能也是非高、可以根据自身业务特性分配bit位,非常灵活强依赖机器时钟,如果机器上时钟回拨,会导致发号重复或者服务会处于不可用状态。
号段模式数据库的压力小单点故障ID不连续
Leaf、Uidgenerator、TinyID高性能、高可用、接入简单依赖第三方组件如ZooKeeper、Mysql

相关文章:

九种分布式ID解决方案

文章目录背景1、UUID2、数据库自增ID2.1、主键表2.2、ID自增步长设置3、号段模式4、Redis INCR5、雪花算法6、美团(Leaf)7、百度(Uidgenerator)8、滴滴(TinyID)总结比较背景 在复杂的分布式系统中&#xff0c;往往需要对大量的数据进行唯一标识&#xff0c;比如在对一个订单表…...

RocketMQ源码分析

RocketMQ源码深入剖析 1 RocketMQ介绍 RocketMQ 是阿里巴巴集团基于高可用分布式集群技术&#xff0c;自主研发的云正式商用的专业消息中间件&#xff0c;既可为分布式应用系统提供异步解耦和削峰填谷的能力&#xff0c;同时也具备互联网应用所需的海量消息堆积、高吞吐、可靠…...

跟着我从零开始入门FPGA(一周入门系列)第六天

6、有限状态机状态机&#xff0c;只要C代码写过2年的人&#xff0c;估计无人不识君&#xff0c;稍微复杂的逻辑都可以借助状态机来简化问题。为了方便&#xff0c;我们使用前面用过的一个例子&#xff0c;来说明状态机的应用&#xff0c;也就是说我们前面已经有意无意的用过状态…...

2023最新JVM面试题汇总进大厂必备

JVM 面试题汇总 1.什么是 JVM&#xff1f;它有什么作用&#xff1f; 答&#xff1a;JVM 是 Java Virtual Machine&#xff08;Java 虚拟机&#xff09;的缩写&#xff0c;顾名思义它是一个虚 拟计算机&#xff0c;也是 Java 程序能够实现跨平台的基础。它的作用是加载 Java 程…...

Cocoa-presentViewController

presentViewController:animator: 将一个viewController以动画方式显示出来 当VCA模态的弹出了VCB&#xff0c;那么VCA就是presenting view controller&#xff0c;VCB就是presented view controller presentViewController 相较于addSubView 直接作为subView就是不会出现一…...

Vue Mixins

Vue Mixins 详解 Vue.js 是一个非常流行的 JavaScript 框架&#xff0c;它提供了一系列的工具来简化 Web 应用程序的开发。其中一个非常有用的工具就是 Mixins。 什么是 Mixins&#xff1f; Mixins 是一种 Vue.js 组件复用的方法&#xff0c;它允许您将一组组件选项合并到一…...

Django-版本信息介绍-版本选择

文章目录1.如何获取Django1.1.选项1:获取最新的正式版本1.2.选项2:获取4.2的beta版1.3.选项3:获取最新的开发版本2.得到之后3.支持版本4.选择版本1.如何获取Django Django在BSD许可下是开源的。我们建议使用最新版本的Python 3。支持Python 2.7的最新版本是Django 1.11 LTS。请…...

写给交互设计新手的信息架构全方位指南

目录什么是信息架构&#xff1f;通用方法日常工作可以关注的大神常用工具相关书籍什么是信息架构&#xff1f;信息架构是一个比众多其他领域更难定义的领域。内容策划由内容策划师来完成&#xff0c;交互设计由设计师来完成&#xff0c;而信息架构的完成与它们不同&#xff0c;…...

15、主从复制,gtid,并行复制,半同步复制,实操案例,常用命令,故障处理

主从复制,gtid,并行复制,半同步复制,实操案例,常用命令,故障处理 1.认识主从复制1.1 主从复制原理深入讲解1.2 主从复制相关参数1.3.主从复制架构部署1.4从库状态详解1.5 .过滤复制2 .gtid复制2.1 什么是GTID?2.2 GTID主从配置2.5 gtid维护2.4 GTID的特点2.3 工作原理2.4 g…...

【C语言】实现文件内容映射转移

有两个文件&#xff08;QA&#xff0c;与QB&#xff09;。 文件A是经过了字母映射加密的文本&#xff08;将英文字母一一映射成了另一个&#xff09;&#xff0c; 文件B是字母映射的关系表&#xff08;格式如A-c;B-R;…,其中前一个字母为加密前的&#xff09;&#xff0c;编写程…...

html css输入框获得焦点、失去焦点效果

input输入框获得焦点、失去焦点效果 废话shao shuo ! 直接看效果图&#xff0c;好吧&#xff01; 效果图&#xff1a; code: <!DOCTYPE html> <html> <head><title></title><meta charset"utf-8" /><style type"text…...

Spark Streaming

第1章 SparkStreaming 概述1.1 Spark Streaming 是什么Spark 流使得构建可扩展的容错流应用程序变得更加容易。**Spark Streaming 用于流式数据的处理。**Spark Streaming 支持的数据输入源很多&#xff0c;例如&#xff1a;Kafka、Flume、Twitter、ZeroMQ 和简单的 TCP 套接字…...

[kubernetes]-k8s通过psp限制nvidia-plugin插件的使用

导语&#xff1a; k8s通过psp限制nvidia-plugin插件的使用。刚开始接触psp 记录一下 后续投入生产测试了再完善。 通过apiserver开启psp 静态pod会自动更新 # PSP(Pod Security Policy) 在默认情况下并不会开启。通过将PodSecurityPolicy关键词添加到 --enbale-admission-plu…...

简单易懂又非常牛逼的Spring源码解析,推断构造与bean的实例化

简单易懂又非常牛逼的Spring源码解析&#xff0c;推断构造与bean的实例化原理解析实例化bean的入口工厂方法实例化推断构造初次筛选二次筛选bean的实例化代码走读实例化bean的入口createBeanInstance方法内部的流程推断构造初次筛选二次筛选bean的实例化总结往期文章&#xff1…...

Win11的两个实用技巧系列清理磁盘碎片、设置系统还原点的方法

Win11如何清理磁盘碎片?Win11清理磁盘碎片的方法磁盘碎片过多&#xff0c;会影响电脑的运行速度&#xff0c;所以需要定期清理&#xff0c;这篇文章将以Win11为例&#xff0c;给大家分享的整理磁盘碎片方法相信很多用户都会发现&#xff0c;随着电脑使用时间的增加&#xff0c…...

嵌入式 STM32 红外遥控

目录 红外遥控 NEC码的位定义 硬件设计 软件设计 源码程序 红外遥控 红外遥控是一种无线、非接触控制技术&#xff0c;具有抗干扰能力强&#xff0c;信息传输可靠&#xff0c;功耗低&#xff0c;成本低&#xff0c;容易实现等显著的特点&#xff0c;被诸多电子设备特别…...

【java web篇】使用JDBC操作数据库

&#x1f4cb; 个人简介 &#x1f496; 作者简介&#xff1a;大家好&#xff0c;我是阿牛&#xff0c;全栈领域优质创作者。&#x1f61c;&#x1f4dd; 个人主页&#xff1a;馆主阿牛&#x1f525;&#x1f389; 支持我&#xff1a;点赞&#x1f44d;收藏⭐️留言&#x1f4d…...

华为OD机试题,用 Java 解【最小步骤数】问题

最近更新的博客 华为OD机试题,用 Java 解【停车场车辆统计】问题华为OD机试题,用 Java 解【字符串变换最小字符串】问题华为OD机试题,用 Java 解【计算最大乘积】问题华为OD机试题,用 Java 解【DNA 序列】问题华为OD机试 - 组成最大数(Java) | 机试题算法思路 【2023】使…...

JAVA中 throw 和 throws 的区别含案例

JAVA中 throw 和 throws 的区别含案例 在 Java 中&#xff0c;throw 和 throws 是两个关键字&#xff0c;它们用于处理异常。 throw 关键字用于抛出一个异常对象。一旦抛出异常&#xff0c;程序将停止执行当前方法的剩余代码&#xff0c;并尝试寻找与该异常匹配的 catch 块来…...

基于SpringCloud的可靠消息最终一致性05:保存并发送事务消息

在有了分布式事务的解决方案、项目的需求、骨架代码和基础代码,做好了所有的准备工作之后,接下来就可以继续深入了解「核心业务」了。 在前面了解分布式事务时,可靠消息最终一致性方案的流程图是这样的: 图三十一:可靠消息最终一致性 整个的流程是: 1、业务处理服务在事务…...

基于大模型的 UI 自动化系统

基于大模型的 UI 自动化系统 下面是一个完整的 Python 系统,利用大模型实现智能 UI 自动化,结合计算机视觉和自然语言处理技术,实现"看屏操作"的能力。 系统架构设计 #mermaid-svg-2gn2GRvh5WCP2ktF {font-family:"trebuchet ms",verdana,arial,sans-…...

设计模式和设计原则回顾

设计模式和设计原则回顾 23种设计模式是设计原则的完美体现,设计原则设计原则是设计模式的理论基石, 设计模式 在经典的设计模式分类中(如《设计模式:可复用面向对象软件的基础》一书中),总共有23种设计模式,分为三大类: 一、创建型模式(5种) 1. 单例模式(Sing…...

在HarmonyOS ArkTS ArkUI-X 5.0及以上版本中,手势开发全攻略:

在 HarmonyOS 应用开发中&#xff0c;手势交互是连接用户与设备的核心纽带。ArkTS 框架提供了丰富的手势处理能力&#xff0c;既支持点击、长按、拖拽等基础单一手势的精细控制&#xff0c;也能通过多种绑定策略解决父子组件的手势竞争问题。本文将结合官方开发文档&#xff0c…...

C++八股 —— 单例模式

文章目录 1. 基本概念2. 设计要点3. 实现方式4. 详解懒汉模式 1. 基本概念 线程安全&#xff08;Thread Safety&#xff09; 线程安全是指在多线程环境下&#xff0c;某个函数、类或代码片段能够被多个线程同时调用时&#xff0c;仍能保证数据的一致性和逻辑的正确性&#xf…...

今日学习:Spring线程池|并发修改异常|链路丢失|登录续期|VIP过期策略|数值类缓存

文章目录 优雅版线程池ThreadPoolTaskExecutor和ThreadPoolTaskExecutor的装饰器并发修改异常并发修改异常简介实现机制设计原因及意义 使用线程池造成的链路丢失问题线程池导致的链路丢失问题发生原因 常见解决方法更好的解决方法设计精妙之处 登录续期登录续期常见实现方式特…...

在web-view 加载的本地及远程HTML中调用uniapp的API及网页和vue页面是如何通讯的?

uni-app 中 Web-view 与 Vue 页面的通讯机制详解 一、Web-view 简介 Web-view 是 uni-app 提供的一个重要组件&#xff0c;用于在原生应用中加载 HTML 页面&#xff1a; 支持加载本地 HTML 文件支持加载远程 HTML 页面实现 Web 与原生的双向通讯可用于嵌入第三方网页或 H5 应…...

Selenium常用函数介绍

目录 一&#xff0c;元素定位 1.1 cssSeector 1.2 xpath 二&#xff0c;操作测试对象 三&#xff0c;窗口 3.1 案例 3.2 窗口切换 3.3 窗口大小 3.4 屏幕截图 3.5 关闭窗口 四&#xff0c;弹窗 五&#xff0c;等待 六&#xff0c;导航 七&#xff0c;文件上传 …...

Web后端基础(基础知识)

BS架构&#xff1a;Browser/Server&#xff0c;浏览器/服务器架构模式。客户端只需要浏览器&#xff0c;应用程序的逻辑和数据都存储在服务端。 优点&#xff1a;维护方便缺点&#xff1a;体验一般 CS架构&#xff1a;Client/Server&#xff0c;客户端/服务器架构模式。需要单独…...

HubSpot推出与ChatGPT的深度集成引发兴奋与担忧

上周三&#xff0c;HubSpot宣布已构建与ChatGPT的深度集成&#xff0c;这一消息在HubSpot用户和营销技术观察者中引发了极大的兴奋&#xff0c;但同时也存在一些关于数据安全的担忧。 许多网络声音声称&#xff0c;这对SaaS应用程序和人工智能而言是一场范式转变。 但向任何技…...

OD 算法题 B卷【正整数到Excel编号之间的转换】

文章目录 正整数到Excel编号之间的转换 正整数到Excel编号之间的转换 excel的列编号是这样的&#xff1a;a b c … z aa ab ac… az ba bb bc…yz za zb zc …zz aaa aab aac…; 分别代表以下的编号1 2 3 … 26 27 28 29… 52 53 54 55… 676 677 678 679 … 702 703 704 705;…...