当前位置: 首页 > news >正文

HiveSql一天一个小技巧:如何巧用分布函数percent_rank()求去掉最大最小值的平均薪水问题

0 问题描述

参考链接

(3条消息) HiveSql面试题12--如何分析去掉最大最小值的平均薪水(字节跳动)_莫叫石榴姐的博客-CSDN博客

文中已经给出了三种解法,这里我们借助于此题,来研究如何用percent_rank()函数求解,简化解题思路。

1 percent_rank()函数 使用

percent_rank() 函数为分布函数,用于返回某个排序数值在数据集中的百分比排位,其值分布在0-1之间【0,1】,此函数用于计算数值在数据集内的相对位置。

计算公式:当前行rn -1 / 组内行数 -1 其中减去1表示排位时候不包括他本身,表示他前面有多少人比他值低或高,在实际中有一定分析意义。

使用场景:用于关心排在我前面的有多少人。

如:班级成绩为例,返回的百分数60%表示某个分数排在班级总分排名前60%。

比如站队:我往往关心的是排在我前面的有多少人。如下一组数据:

如成绩为20的人,排在他前面的有5个人,除去自身,总共有6个人,那么他的相对排名百分比为 5/6

成绩为10的,排在他前面的有6个人,除去自身,那么整个群体中都比他的分数高,所以也就是100%

成绩

排名(rank)

百分比排名(percent_rank)

100

1

0%

100

1

0%

80

3

33%

40

4

50%

40

4

50%

20

6

83%

10

7

100%

注意点:(1)percent_rank()对重复值的处理

(2)percent_rank()对NULL值的处理

特点:首尾一定是0 和1

cume_dist():累积百分比

和percent_rank()差不多,区别在于是否排除自身影响

含义:

升序排序:表示小于等于当前值的人数所占百分比

降序排序:大于等于当前值的人数所占百分比

2 题目分析

题目中要求是去除最大、最小值后的平均值,因此本题难点问题是如何去除,最大、最小值。我们经过上面分析,percent_rank() 函数为按照某个排序后值进行排名后当前行的占比,其值在[0,1]区间内,按照其特性,我们知道排序后,0和1 的值代表最小和最大值,因此我们根据该函数很容易获取最大最小值的标记,从而解决了row_number() 或dense_rank()函数使用一次排序不能彻底区分最大,最小值的问题,简化了问题的求解方式。具体SQL如下:

with salary as (
select
'10001' emp_num    , '1' dep_num    , '60117'   salary
union all
select '10002' emp_num    , '2' dep_num    , '92102'   salary
union all
select '10003' emp_num    , '2' dep_num    , '86074'   salary
union all
select '10004' emp_num    , '1' dep_num    , '66596'   salary
union all
select '10005' emp_num    , '1' dep_num    , '66961'   salary
union all
select '10006' emp_num    , '2' dep_num    , '81046'   salary
union all
select '10007' emp_num    , '2' dep_num    , '94333'   salary
union all
select '10008' emp_num    , '1' dep_num    , '75286'   salary
union all
select '10009' emp_num    , '2' dep_num    , '85994'   salary
union all
select '10010' emp_num    , '1' dep_num    , '76884'   salary
)
SELECT dep_num,cast(avg(salary) as decimal(18,0)) as avg_salaryfrom(
SELECTemp_num,dep_num,salary,PERCENT_RANK() over(PARTITION BY dep_num ORDER BY salary) as rate
from salary
) twhere rate != 0 and rate != 1
group by dep_num;

3 小结

本文给出了一种利用percent_rank()求去掉最大最小值的平均薪水的方法,该方法更简洁高效,值得借鉴。通过本文需要掌握的姿势点如下:

  • PERCENT_RANK函数的作用、意义及使用场景是什么?

  • PERCENT_RANK函数的结果是如何计算?

  • PERCENT_RANK与cume_disk()函数的区别?

  • 如何利用PERCENT_RANK()函数的特性快速get最大、最小值?

相关文章:

HiveSql一天一个小技巧:如何巧用分布函数percent_rank()求去掉最大最小值的平均薪水问题

0 问题描述参考链接(3条消息) HiveSql面试题12--如何分析去掉最大最小值的平均薪水(字节跳动)_莫叫石榴姐的博客-CSDN博客文中已经给出了三种解法,这里我们借助于此题,来研究如何用percent_rank()函数求解,简化解题思路…...

【python实现华为OD机试真题】优雅子数组【2023 Q1 | 200分】

题目描述 如果一个数组Q中出现次数最多的元素出现大于等于K次,被称为k-优雅数组,k也可以被称为优雅阈值只。 例如: 数组1,2, 3, 1、2, 3, 1,它是一个3-优雅数组,因为元素1出现次数大于等于3次, 数组[1,2, 3, 1, 2]就不是一一个3-优雅数组,因为其中出现次数最多的元素是1和…...

九种分布式ID解决方案

文章目录背景1、UUID2、数据库自增ID2.1、主键表2.2、ID自增步长设置3、号段模式4、Redis INCR5、雪花算法6、美团(Leaf)7、百度(Uidgenerator)8、滴滴(TinyID)总结比较背景 在复杂的分布式系统中,往往需要对大量的数据进行唯一标识,比如在对一个订单表…...

RocketMQ源码分析

RocketMQ源码深入剖析 1 RocketMQ介绍 RocketMQ 是阿里巴巴集团基于高可用分布式集群技术,自主研发的云正式商用的专业消息中间件,既可为分布式应用系统提供异步解耦和削峰填谷的能力,同时也具备互联网应用所需的海量消息堆积、高吞吐、可靠…...

跟着我从零开始入门FPGA(一周入门系列)第六天

6、有限状态机状态机,只要C代码写过2年的人,估计无人不识君,稍微复杂的逻辑都可以借助状态机来简化问题。为了方便,我们使用前面用过的一个例子,来说明状态机的应用,也就是说我们前面已经有意无意的用过状态…...

2023最新JVM面试题汇总进大厂必备

JVM 面试题汇总 1.什么是 JVM?它有什么作用? 答:JVM 是 Java Virtual Machine(Java 虚拟机)的缩写,顾名思义它是一个虚 拟计算机,也是 Java 程序能够实现跨平台的基础。它的作用是加载 Java 程…...

Cocoa-presentViewController

presentViewController:animator: 将一个viewController以动画方式显示出来 当VCA模态的弹出了VCB,那么VCA就是presenting view controller,VCB就是presented view controller presentViewController 相较于addSubView 直接作为subView就是不会出现一…...

Vue Mixins

Vue Mixins 详解 Vue.js 是一个非常流行的 JavaScript 框架,它提供了一系列的工具来简化 Web 应用程序的开发。其中一个非常有用的工具就是 Mixins。 什么是 Mixins? Mixins 是一种 Vue.js 组件复用的方法,它允许您将一组组件选项合并到一…...

Django-版本信息介绍-版本选择

文章目录1.如何获取Django1.1.选项1:获取最新的正式版本1.2.选项2:获取4.2的beta版1.3.选项3:获取最新的开发版本2.得到之后3.支持版本4.选择版本1.如何获取Django Django在BSD许可下是开源的。我们建议使用最新版本的Python 3。支持Python 2.7的最新版本是Django 1.11 LTS。请…...

写给交互设计新手的信息架构全方位指南

目录什么是信息架构?通用方法日常工作可以关注的大神常用工具相关书籍什么是信息架构?信息架构是一个比众多其他领域更难定义的领域。内容策划由内容策划师来完成,交互设计由设计师来完成,而信息架构的完成与它们不同,…...

15、主从复制,gtid,并行复制,半同步复制,实操案例,常用命令,故障处理

主从复制,gtid,并行复制,半同步复制,实操案例,常用命令,故障处理 1.认识主从复制1.1 主从复制原理深入讲解1.2 主从复制相关参数1.3.主从复制架构部署1.4从库状态详解1.5 .过滤复制2 .gtid复制2.1 什么是GTID?2.2 GTID主从配置2.5 gtid维护2.4 GTID的特点2.3 工作原理2.4 g…...

【C语言】实现文件内容映射转移

有两个文件(QA,与QB)。 文件A是经过了字母映射加密的文本(将英文字母一一映射成了另一个), 文件B是字母映射的关系表(格式如A-c;B-R;…,其中前一个字母为加密前的),编写程…...

html css输入框获得焦点、失去焦点效果

input输入框获得焦点、失去焦点效果 废话shao shuo ! 直接看效果图&#xff0c;好吧&#xff01; 效果图&#xff1a; code: <!DOCTYPE html> <html> <head><title></title><meta charset"utf-8" /><style type"text…...

Spark Streaming

第1章 SparkStreaming 概述1.1 Spark Streaming 是什么Spark 流使得构建可扩展的容错流应用程序变得更加容易。**Spark Streaming 用于流式数据的处理。**Spark Streaming 支持的数据输入源很多&#xff0c;例如&#xff1a;Kafka、Flume、Twitter、ZeroMQ 和简单的 TCP 套接字…...

[kubernetes]-k8s通过psp限制nvidia-plugin插件的使用

导语&#xff1a; k8s通过psp限制nvidia-plugin插件的使用。刚开始接触psp 记录一下 后续投入生产测试了再完善。 通过apiserver开启psp 静态pod会自动更新 # PSP(Pod Security Policy) 在默认情况下并不会开启。通过将PodSecurityPolicy关键词添加到 --enbale-admission-plu…...

简单易懂又非常牛逼的Spring源码解析,推断构造与bean的实例化

简单易懂又非常牛逼的Spring源码解析&#xff0c;推断构造与bean的实例化原理解析实例化bean的入口工厂方法实例化推断构造初次筛选二次筛选bean的实例化代码走读实例化bean的入口createBeanInstance方法内部的流程推断构造初次筛选二次筛选bean的实例化总结往期文章&#xff1…...

Win11的两个实用技巧系列清理磁盘碎片、设置系统还原点的方法

Win11如何清理磁盘碎片?Win11清理磁盘碎片的方法磁盘碎片过多&#xff0c;会影响电脑的运行速度&#xff0c;所以需要定期清理&#xff0c;这篇文章将以Win11为例&#xff0c;给大家分享的整理磁盘碎片方法相信很多用户都会发现&#xff0c;随着电脑使用时间的增加&#xff0c…...

嵌入式 STM32 红外遥控

目录 红外遥控 NEC码的位定义 硬件设计 软件设计 源码程序 红外遥控 红外遥控是一种无线、非接触控制技术&#xff0c;具有抗干扰能力强&#xff0c;信息传输可靠&#xff0c;功耗低&#xff0c;成本低&#xff0c;容易实现等显著的特点&#xff0c;被诸多电子设备特别…...

【java web篇】使用JDBC操作数据库

&#x1f4cb; 个人简介 &#x1f496; 作者简介&#xff1a;大家好&#xff0c;我是阿牛&#xff0c;全栈领域优质创作者。&#x1f61c;&#x1f4dd; 个人主页&#xff1a;馆主阿牛&#x1f525;&#x1f389; 支持我&#xff1a;点赞&#x1f44d;收藏⭐️留言&#x1f4d…...

华为OD机试题,用 Java 解【最小步骤数】问题

最近更新的博客 华为OD机试题,用 Java 解【停车场车辆统计】问题华为OD机试题,用 Java 解【字符串变换最小字符串】问题华为OD机试题,用 Java 解【计算最大乘积】问题华为OD机试题,用 Java 解【DNA 序列】问题华为OD机试 - 组成最大数(Java) | 机试题算法思路 【2023】使…...

Linux链表操作全解析

Linux C语言链表深度解析与实战技巧 一、链表基础概念与内核链表优势1.1 为什么使用链表&#xff1f;1.2 Linux 内核链表与用户态链表的区别 二、内核链表结构与宏解析常用宏/函数 三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势5.1 插入效率5.2 安全…...

从深圳崛起的“机器之眼”:赴港乐动机器人的万亿赛道赶考路

进入2025年以来&#xff0c;尽管围绕人形机器人、具身智能等机器人赛道的质疑声不断&#xff0c;但全球市场热度依然高涨&#xff0c;入局者持续增加。 以国内市场为例&#xff0c;天眼查专业版数据显示&#xff0c;截至5月底&#xff0c;我国现存在业、存续状态的机器人相关企…...

【论文笔记】若干矿井粉尘检测算法概述

总的来说&#xff0c;传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度&#xff0c;通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...

有限自动机到正规文法转换器v1.0

1 项目简介 这是一个功能强大的有限自动机&#xff08;Finite Automaton, FA&#xff09;到正规文法&#xff08;Regular Grammar&#xff09;转换器&#xff0c;它配备了一个直观且完整的图形用户界面&#xff0c;使用户能够轻松地进行操作和观察。该程序基于编译原理中的经典…...

Selenium常用函数介绍

目录 一&#xff0c;元素定位 1.1 cssSeector 1.2 xpath 二&#xff0c;操作测试对象 三&#xff0c;窗口 3.1 案例 3.2 窗口切换 3.3 窗口大小 3.4 屏幕截图 3.5 关闭窗口 四&#xff0c;弹窗 五&#xff0c;等待 六&#xff0c;导航 七&#xff0c;文件上传 …...

Linux nano命令的基本使用

参考资料 GNU nanoを使いこなすnano基础 目录 一. 简介二. 文件打开2.1 普通方式打开文件2.2 只读方式打开文件 三. 文件查看3.1 打开文件时&#xff0c;显示行号3.2 翻页查看 四. 文件编辑4.1 Ctrl K 复制 和 Ctrl U 粘贴4.2 Alt/Esc U 撤回 五. 文件保存与退出5.1 Ctrl …...

基于PHP的连锁酒店管理系统

有需要请加文章底部Q哦 可远程调试 基于PHP的连锁酒店管理系统 一 介绍 连锁酒店管理系统基于原生PHP开发&#xff0c;数据库mysql&#xff0c;前端bootstrap。系统角色分为用户和管理员。 技术栈 phpmysqlbootstrapphpstudyvscode 二 功能 用户 1 注册/登录/注销 2 个人中…...

【Elasticsearch】Elasticsearch 在大数据生态圈的地位 实践经验

Elasticsearch 在大数据生态圈的地位 & 实践经验 1.Elasticsearch 的优势1.1 Elasticsearch 解决的核心问题1.1.1 传统方案的短板1.1.2 Elasticsearch 的解决方案 1.2 与大数据组件的对比优势1.3 关键优势技术支撑1.4 Elasticsearch 的竞品1.4.1 全文搜索领域1.4.2 日志分析…...

HTML前端开发:JavaScript 获取元素方法详解

作为前端开发者&#xff0c;高效获取 DOM 元素是必备技能。以下是 JS 中核心的获取元素方法&#xff0c;分为两大系列&#xff1a; 一、getElementBy... 系列 传统方法&#xff0c;直接通过 DOM 接口访问&#xff0c;返回动态集合&#xff08;元素变化会实时更新&#xff09;。…...

jdbc查询mysql数据库时,出现id顺序错误的情况

我在repository中的查询语句如下所示&#xff0c;即传入一个List<intager>的数据&#xff0c;返回这些id的问题列表。但是由于数据库查询时ID列表的顺序与预期不一致&#xff0c;会导致返回的id是从小到大排列的&#xff0c;但我不希望这样。 Query("SELECT NEW com…...