当前位置: 首页 > news >正文

【OpenCV实现图像:图像处理技巧之空间滤波】

文章目录

    • 概要
    • 导入库
    • 空间过滤器模板
    • 展示效果
    • 分析与总结

概要

空间滤波器是数字图像处理中的基本工具之一。它通过在图像的每个像素位置上应用一个特定的滤波模板,根据该位置周围的相邻像素值进行加权操作,从而修改该像素的值。这种加权操作能够突出或模糊图像的特定特征,实现多种图像处理任务。

在降噪任务中,空间滤波器可以平均化局部像素值,减少图像中的噪声,使图像看起来更清晰。在边缘检测中,滤波器可以强调图像中的边缘,使其更加显著,便于后续分析。而在图像平滑任务中,空间滤波器则可以平滑图像中的过渡区域,使图像看起来更加连续和自然。

通过在不同的图像处理场景中灵活应用空间滤波器,可以有效改善图像质量,满足各种视觉需求。这些滤波器的设计和选择是图像处理领域的重要课题,能够帮助人们更好地理解和分析图像信息。

导入库

为了进行图像处理,我们通常需要导入一些必要的库

import numpy as np
import matplotlib.pyplot as plt
from fractions import Fraction
from skimage.io import imread, imshow
from scipy.signal import convolve2d
from skimage.color import rgb2gray, gray2rgb

空间过滤器模板

空间滤波器模板是用于修改像素值的核心工具。在以下代码中,我们定义了五种常见的空间滤波器模板,分别是Horizontal Sobel Filter、Vertical Sobel Filter、Edge Detection、Sharpen和Box Blur。

def get_filters():# 定义滤波器模板kernel_hsf = np.array([[1, 2, 1],[0, 0, 0],[-1, -2, -1]])kernel_vsf = np.array([[1, 0, -1],[2, 0, -2],[1, 0, -1]])kernel_edge = np.array([[-1, -1, -1],[-1, 8, -1],[-1, -1, -1]])kernel_sharpen = np.array([[0, -1, 0],[-1, 5, -1],[0, -1, 0]])kernel_bblur = (1 / 9.0) * np.array([[1., 1., 1.],[1., 1., 1.],[1., 1., 1.]])kernels = {'Box Blur': kernel_bblur,'Sharpen': kernel_sharpen,'Horizontal Sobel Filter': kernel_hsf,'Vertical Sobel Filter': kernel_vsf,'Edge Detection': kernel_edge,}return kernels

展示效果

通过以上定义的滤波器模板,我们可以将它们应用于真实图像上,以获得不同的视觉效果。
display_filters('dorm_lobby.png') 换成自己的图片即可

def display_filters(image_path):# 读取图像image = imread(image_path)[:,:,:3]    kernels = get_filters()# 创建包含子图的图像窗口fig, ax = plt.subplots(2, 3, figsize=(20, 15))ax[0, 0].imshow(rgb2gray(image[:,:,:3]), cmap='gray')ax[0, 0].set_title('Original Image', fontsize=20)ax[0, 0].set_xticks([])ax[0, 0].set_yticks([])for i, (name, kernel) in enumerate(kernels.items(), 1):row = i // 3col = i % 3ax[row, col].imshow(kernel, cmap='gray')ax[row, col].set_title(name, fontsize=30)for (j, k), val in np.ndenumerate(kernel):if val < 1:ax[row, col].text(k, j, str(Fraction(val).limit_denominator()), ha='center', va='center', color='red', fontsize=30)else:ax[row, col].text(k, j, str(val), ha='center', va='center', color='red', fontsize=30)plt.tight_layout()plt.show()# 展示滤波器效果
display_filters('dorm_lobby.png')

结果:
在这里插入图片描述
述代码中,通过函数get_filters(),我们定义了五种常见的空间滤波器模板,分别为Horizontal Sobel Filter, Vertical Sobel Filter, Edge Detection, Sharpen以及 Box Blur 。接着我们可以将这些滤波器应用于真实图像。

import numpy as np
import matplotlib.pyplot as plt
from fractions import Fraction
from skimage.io import imread, imshow# For Spatial Filters
from scipy.signal import convolve2d
from skimage.color import rgb2gray, gray2rgb
def get_filters():# Define Filters# Horizontal Sobel Filterkernel_hsf = np.array([[1, 2, 1],[0, 0, 0],[-1, -2, -1]])# Vertical Sobel Filterkernel_vsf = np.array([[1, 0, -1],[2, 0, -2],[1, 0, -1]])# Edge Detectionkernel_edge = np.array([[-1, -1, -1],[-1, 8, -1],[-1, -1, -1]])# Sharpenkernel_sharpen = np.array([[0, -1, 0],[-1, 5, -1],[0, -1, 0]])# Box Blurkernel_bblur = (1 / 9.0) * np.array([[1., 1., 1.],[1., 1., 1.],[1., 1., 1.]])# Define the kernelskernels = {'Box Blur': kernel_bblur,'Sharpen': kernel_sharpen,'Horizontal Sobel Filter': kernel_hsf,'Vertical Sobel Filter': kernel_vsf,'Edge Detection': kernel_edge,}return kernelsdef display_filters(image_path):# Read the imageimage = imread(image_path)[:, :, :3]kernels = get_filters()# Create a figure with subplots for each kernelfig, ax = plt.subplots(2, 3, figsize=(20, 15))ax[0, 0].imshow(rgb2gray(image[:, :, :3]), cmap='gray')ax[0, 0].set_title('Original Image', fontsize=20)ax[0, 0].set_xticks([])ax[0, 0].set_yticks([])# Loop over the keys and values in the kernels dictionaryfor i, (name, kernel) in enumerate(kernels.items(), 1):# Determine the subplot indexrow = i // 3col = i % 3# Plot the kernel on the appropriate subplotax[row, col].imshow(kernel, cmap='gray')ax[row, col].set_title(name, fontsize=30)# Loop over the cells in the kernelfor (j, k), val in np.ndenumerate(kernel):if val < 1:ax[row, col].text(k, j,str(Fraction(val).limit_denominator()),ha='center', va='center',color='red', fontsize=30)else:ax[row, col].text(k, j, str(val),ha='center', va='center',color='red', fontsize=30)# Show the plotplt.tight_layout()plt.show()def apply_selected_kernels(image_path, selected_kernels, plot_cols=3):# Define the kernelskernels = get_filters()# Check if the selected kernels are defined, if not raise an exceptionfor k in selected_kernels:if k not in kernels:raise ValueError(f"Kernel '{k}' not defined.")# Read the imageimage = imread(image_path)[:, :, :3]# Apply selected kernels to each color channel of the imageconv_rgb_images = {}for kernel_name in selected_kernels:kernel = kernels[kernel_name]transformed_channels = []for i in range(3):conv_image = convolve2d(image[:, :, i], kernel, 'valid')transformed_channels.append(abs(conv_image))conv_rgb_image = np.dstack(transformed_channels)conv_rgb_image = np.clip(conv_rgb_image, 0, 255).astype(np.uint8)conv_rgb_images[kernel_name] = conv_rgb_image# Display the original and convolved imagesfig, axs = plt.subplots(len(selected_kernels) + 1, plot_cols, figsize=(15, 10))axs[0, 0].imshow(image)axs[0, 0].set_title('Original Image')axs[0, 0].axis('off')for i, kernel_name in enumerate(selected_kernels, 1):axs[i, 0].imshow(conv_rgb_images[kernel_name])axs[i, 0].set_title(kernel_name)axs[i, 0].axis('off')# Hide remaining empty subplots, if anyfor i in range(len(selected_kernels) + 1, len(axs.flat)):axs.flatten()[i].axis('off')plt.tight_layout()plt.show()# 调用display_filters()函数来获取滤波器矩阵
# display_filters('dorm_lobby.png')# 调用apply_selected_kernels()函数,传入图像路径和希望应用的滤波器名称列表
apply_selected_kernels('dorm_lobby.png',['Edge Detection','Horizontal Sobel Filter','Vertical Sobel Filter'])

结果:
在这里插入图片描述
当然,我们可以通过以下代码查看其他几种模板的对应效果,代码如下:

# Visualize Edge Detection, Sharpen, and Box Blur
apply_selected_kernels('dog.png', ['Edge Detection','Sharpen', 'Box Blur'], plot_cols=2)

分析与总结

在图像处理中,空间滤波器的作用非常强大。不同的滤波器模板可以用于实现各种图像处理任务,例如边缘检测、图像锐化和模糊等。通过深入了解每种滤波器的特点和应用场景,我们可以更好地运用它们,释放创造力,探索图像处理的无限可能性。通过本文的介绍,希望读者对空间滤波器有了更加清晰的认识,能够在实际应用中灵活运用这些知识,创造出更加引人注目的图像效果。

相关文章:

【OpenCV实现图像:图像处理技巧之空间滤波】

文章目录 概要导入库空间过滤器模板展示效果分析与总结 概要 空间滤波器是数字图像处理中的基本工具之一。它通过在图像的每个像素位置上应用一个特定的滤波模板&#xff0c;根据该位置周围的相邻像素值进行加权操作&#xff0c;从而修改该像素的值。这种加权操作能够突出或模…...

载波通讯电表的使用年限是多久?

随着科技的飞速发展&#xff0c;智能家居、物联网等概念逐渐深入人心&#xff0c;载波通讯电表作为一种新型的智能电表&#xff0c;凭借其低功耗、高可靠性、远程通讯等优点&#xff0c;广泛应用于居民用电、工业生产等领域。那么&#xff0c;载波通讯电表的使用年限是多久呢&a…...

微信小程序多端应用 Donut 多端编译

目前支持 wxml、wxs、js/ts、json&#xff0c;less/sass 等文件类型&#xff0c;资源支持通过配置区分不同平台 wxml中使用 <!-- #if MP --><view class"test-view">wechat</view><!-- #elif IOS --><view class"test-view"…...

调试 Mahony 滤波算法的思考 10

调试 Mahony 滤波算法的思考 1. 说在前面的2.Mahony滤波算法的核心思想3. 易懂的理解 Mahony 滤波算法的过程4. 其他的一些思考5. 民间 9轴评估板 1. 说在前面的 之前调试基于QMI8658 6轴姿态解算的时候&#xff0c;我对Mahony滤波的认识还比较浅薄。初次的学习和代码的移植让…...

Bean——IOC(Github上有代码)

源码 https://github.com/cmdch2017/Bean_IOC.git 获取Bean对象 BeanFactory Bean的作用域 第三方Bean需要用Bean注解 比如消息队列项目中&#xff0c;需要用到Json的消息转换器&#xff0c;这是第三方的Bean对象&#xff0c;所以不能用Component&#xff0c;而要用Bean …...

功能更新|Leangoo领歌免费敏捷工具支持SAFe大规模敏捷框架

Leangoo领歌是一款永久免费的专业的敏捷开发管理工具&#xff0c;提供端到端敏捷研发管理解决方案&#xff0c;涵盖敏捷需求管理、任务协同、进展跟踪、统计度量等。 
 Leangoo可以支持敏捷研发管理全流程&#xff0c;包括小型团队敏捷开发&#xff0c;规模化敏捷SAFe&#xf…...

漏刻有时百度地图API实战开发(1)华为手机无法使用addEventListener click 的兼容解决方案

漏刻有时百度地图API实战开发(1)华为手机无法使用addEventListener click 的兼容解决方案漏刻有时百度地图API实战开发(2)文本标签显示和隐藏的切换开关漏刻有时百度地图API实战开发(3)自动获取地图多边形中心点坐标漏刻有时百度地图API实战开发(4)显示指定区域在移动端异常的解…...

交流信号继电器 DX-31BJ/AC220V JOSEF约瑟 电压启动 面板嵌入式安装

DX系列信号继电器由矩形脉冲激磁&#xff0c;磁钢保持。本继电器为双绕组。工作线圈可为电压型&#xff0c;亦可为电流型。复归线圈为电压型。继电器的工作电流或工作电压为长脉冲&#xff0c;亦可为脉冲不小于20mS的短脉冲。 系列型号 DX-31B信号继电器DX-31BJ信号继电器 D…...

SpringCloudAlibaba系列之Nacos配置管理

目录 说明 认识配置中心 Nacos架构图 Nacos配置管理实现原理 核心源码分析-客户端 核心源码分析-服务端 配置修改的实时通知 主流配置中心对比 小小收获 说明 本篇文章主要目的是从头到尾比较粗粒度的分析Nacos配置中心的一些实现&#xff0c;很多细节没有涉及&#…...

Kyligence Copilot 亮相第六届进博会,增添数智新活力

11月5日&#xff0c;第六届中国国际进口博览会&#xff08;以下简称“进博会”&#xff09;在上海国家会展中心盛大启幕&#xff0c;众多新科技、新成果、新展品亮相本届进博会。作为阿斯利康&#xff08;AstraZeneca&#xff09;合作伙伴&#xff0c;跬智信息&#xff08;Kyli…...

MySQL 批量修改表的列名为小写

1、获取脚本 SELECT concat( alter table , TABLE_NAME, change column , COLUMN_NAME, , lower( COLUMN_NAME ), , COLUMN_TYPE, comment \, COLUMN_COMMENT, \; ) AS 脚本 FROM information_schema.COLUMNS WHERE TABLE_SCHEMA 数据库名 and TABLE_NAME表名-- 大写是up…...

ElasticSearch 查询方法示例 java

public List<PricePolicyConditionDTO> queryEs(OrderPriceOutDTO param, List<String> materialCodeList, List<String> categoryCodeList) {BoolQueryBuilder mainQueryBoolBuilder new BoolQueryBuilder();//销售组织if (CharSequenceUtil.isNotEmpty(pa…...

5G毫米波通信中的关键技术

随着5G技术的快速发展&#xff0c;毫米波通信作为其中的一项重要技术&#xff0c;在高速数据传输、低延迟通信和大规模连接等方面具有显著的优势。本文将探讨5G毫米波通信中的关键技术&#xff0c;包括毫米波频段的选择、信号处理技术和MIMO技术等。 一、毫米波频段的选择 毫米…...

2.3.3 交换机的RSTP技术

实验2.3.3 交换机的RSTP技术 一、任务描述二、任务分析三、具体要求四、实验拓扑五、任务实施1.交换机的基本配置。2.开启交换机的STP。3.配置SW3A和SW3B上STP的优先级。将SW3A配置为根交换机&#xff0c;SW3B配置为备用根交换机。4.配置SW2A和SW2B的边缘接口 六、任务验收七、…...

国外访问学者/博士后留学人员反诈骗指南

访问学者/博士后/联合培养博士人员出国后&#xff0c;对当地环境及政策不熟悉&#xff0c;需要提高防范意识&#xff0c;为此&#xff0c;知识人网小编特整理这篇反诈骗指南&#xff0c;提醒留学人员防微杜渐、未雨绸缪。 近日&#xff0c;多国使馆发布相关提醒&#xff1a;不法…...

设计模式之组合模式-创建层次化的对象结构

目录 概述概念主要角色应用场景 组合模式的实现类图NS图基本代码组合模式的精髓意外收获&#xff08;❀❀&#xff09; 应用示例-公司组织架构管理需求结构图代码 组合模式的优缺点优点缺点 总结 概述 概念 组合模式是一种结构型设计模式&#xff0c;它允许将对象组合成树形结…...

Windows 有趣功能集锦

Windows 有趣功能集锦 隐藏文件或文件夹 CMD 运行以下命令隐藏 # attrib h <文件或文件夹名称> attrib r h s a 测试显示 # attrib h <文件或文件夹名称> attrib -r -h -s -a 测试使视频显示为图片 准备一个视频文件和一个需要显示的图片先将视频压缩成压缩文…...

【nodejs版playwright】02-支持多套测试环环境执行用例

日常测试中&#xff0c;一套测试用例需支持在不同的测试环境运行&#xff0c;如staging、production 因为涉及不同的测试环境&#xff0c;那使用的环境变量或参数就不一样&#xff0c;如staging登录可能用到的用户名是A&#xff0c;而production可能用到的是b。 所以需要有一个…...

React高阶组件(Higher-Order Components, HOCs)

React 高阶组件 (Higher Order Components, HOCs) 是一种模式&#xff0c;让组件具备一定的扩展能力。它是函数式编程思想在 React 应用程序中的体现。HOCs 可以让你重用组件&#xff0c;提高组件的可复用性。 HOCs 是什么&#xff1f; 高阶组件实际上是一个函数&#xff0c;…...

利用RoboBrowser库和爬虫代理实现微博视频的爬取

技术概述 微博是一个社交媒体平台&#xff0c;用户可以在上面发布和分享各种内容&#xff0c;包括文字、图片、音频和视频。微博视频是微博上的一种重要的内容形式&#xff0c;有时我们可能想要下载微博视频到本地&#xff0c;以便于观看或分析。但是&#xff0c;微博视频并没…...

网络编程(Modbus进阶)

思维导图 Modbus RTU&#xff08;先学一点理论&#xff09; 概念 Modbus RTU 是工业自动化领域 最广泛应用的串行通信协议&#xff0c;由 Modicon 公司&#xff08;现施耐德电气&#xff09;于 1979 年推出。它以 高效率、强健性、易实现的特点成为工业控制系统的通信标准。 包…...

多云管理“拦路虎”:深入解析网络互联、身份同步与成本可视化的技术复杂度​

一、引言&#xff1a;多云环境的技术复杂性本质​​ 企业采用多云策略已从技术选型升维至生存刚需。当业务系统分散部署在多个云平台时&#xff0c;​​基础设施的技术债呈现指数级积累​​。网络连接、身份认证、成本管理这三大核心挑战相互嵌套&#xff1a;跨云网络构建数据…...

地震勘探——干扰波识别、井中地震时距曲线特点

目录 干扰波识别反射波地震勘探的干扰波 井中地震时距曲线特点 干扰波识别 有效波&#xff1a;可以用来解决所提出的地质任务的波&#xff1b;干扰波&#xff1a;所有妨碍辨认、追踪有效波的其他波。 地震勘探中&#xff0c;有效波和干扰波是相对的。例如&#xff0c;在反射波…...

大型活动交通拥堵治理的视觉算法应用

大型活动下智慧交通的视觉分析应用 一、背景与挑战 大型活动&#xff08;如演唱会、马拉松赛事、高考中考等&#xff09;期间&#xff0c;城市交通面临瞬时人流车流激增、传统摄像头模糊、交通拥堵识别滞后等问题。以演唱会为例&#xff0c;暖城商圈曾因观众集中离场导致周边…...

1688商品列表API与其他数据源的对接思路

将1688商品列表API与其他数据源对接时&#xff0c;需结合业务场景设计数据流转链路&#xff0c;重点关注数据格式兼容性、接口调用频率控制及数据一致性维护。以下是具体对接思路及关键技术点&#xff1a; 一、核心对接场景与目标 商品数据同步 场景&#xff1a;将1688商品信息…...

汽车生产虚拟实训中的技能提升与生产优化​

在制造业蓬勃发展的大背景下&#xff0c;虚拟教学实训宛如一颗璀璨的新星&#xff0c;正发挥着不可或缺且日益凸显的关键作用&#xff0c;源源不断地为企业的稳健前行与创新发展注入磅礴强大的动力。就以汽车制造企业这一极具代表性的行业主体为例&#xff0c;汽车生产线上各类…...

服务器--宝塔命令

一、宝塔面板安装命令 ⚠️ 必须使用 root 用户 或 sudo 权限执行&#xff01; sudo su - 1. CentOS 系统&#xff1a; yum install -y wget && wget -O install.sh http://download.bt.cn/install/install_6.0.sh && sh install.sh2. Ubuntu / Debian 系统…...

Fabric V2.5 通用溯源系统——增加图片上传与下载功能

fabric-trace项目在发布一年后,部署量已突破1000次,为支持更多场景,现新增支持图片信息上链,本文对图片上传、下载功能代码进行梳理,包含智能合约、后端、前端部分。 一、智能合约修改 为了增加图片信息上链溯源,需要对底层数据结构进行修改,在此对智能合约中的农产品数…...

C/C++ 中附加包含目录、附加库目录与附加依赖项详解

在 C/C 编程的编译和链接过程中&#xff0c;附加包含目录、附加库目录和附加依赖项是三个至关重要的设置&#xff0c;它们相互配合&#xff0c;确保程序能够正确引用外部资源并顺利构建。虽然在学习过程中&#xff0c;这些概念容易让人混淆&#xff0c;但深入理解它们的作用和联…...

【Linux】Linux 系统默认的目录及作用说明

博主介绍&#xff1a;✌全网粉丝23W&#xff0c;CSDN博客专家、Java领域优质创作者&#xff0c;掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域✌ 技术范围&#xff1a;SpringBoot、SpringCloud、Vue、SSM、HTML、Nodejs、Python、MySQL、PostgreSQL、大数据、物…...