【OpenCV实现图像:图像处理技巧之空间滤波】
文章目录
- 概要
- 导入库
- 空间过滤器模板
- 展示效果
- 分析与总结
概要
空间滤波器是数字图像处理中的基本工具之一。它通过在图像的每个像素位置上应用一个特定的滤波模板,根据该位置周围的相邻像素值进行加权操作,从而修改该像素的值。这种加权操作能够突出或模糊图像的特定特征,实现多种图像处理任务。
在降噪任务中,空间滤波器可以平均化局部像素值,减少图像中的噪声,使图像看起来更清晰。在边缘检测中,滤波器可以强调图像中的边缘,使其更加显著,便于后续分析。而在图像平滑任务中,空间滤波器则可以平滑图像中的过渡区域,使图像看起来更加连续和自然。
通过在不同的图像处理场景中灵活应用空间滤波器,可以有效改善图像质量,满足各种视觉需求。这些滤波器的设计和选择是图像处理领域的重要课题,能够帮助人们更好地理解和分析图像信息。
导入库
为了进行图像处理,我们通常需要导入一些必要的库
import numpy as np
import matplotlib.pyplot as plt
from fractions import Fraction
from skimage.io import imread, imshow
from scipy.signal import convolve2d
from skimage.color import rgb2gray, gray2rgb
空间过滤器模板
空间滤波器模板是用于修改像素值的核心工具。在以下代码中,我们定义了五种常见的空间滤波器模板,分别是Horizontal Sobel Filter、Vertical Sobel Filter、Edge Detection、Sharpen和Box Blur。
def get_filters():# 定义滤波器模板kernel_hsf = np.array([[1, 2, 1],[0, 0, 0],[-1, -2, -1]])kernel_vsf = np.array([[1, 0, -1],[2, 0, -2],[1, 0, -1]])kernel_edge = np.array([[-1, -1, -1],[-1, 8, -1],[-1, -1, -1]])kernel_sharpen = np.array([[0, -1, 0],[-1, 5, -1],[0, -1, 0]])kernel_bblur = (1 / 9.0) * np.array([[1., 1., 1.],[1., 1., 1.],[1., 1., 1.]])kernels = {'Box Blur': kernel_bblur,'Sharpen': kernel_sharpen,'Horizontal Sobel Filter': kernel_hsf,'Vertical Sobel Filter': kernel_vsf,'Edge Detection': kernel_edge,}return kernels
展示效果
通过以上定义的滤波器模板,我们可以将它们应用于真实图像上,以获得不同的视觉效果。
将display_filters('dorm_lobby.png') 换成自己的图片即可
def display_filters(image_path):# 读取图像image = imread(image_path)[:,:,:3] kernels = get_filters()# 创建包含子图的图像窗口fig, ax = plt.subplots(2, 3, figsize=(20, 15))ax[0, 0].imshow(rgb2gray(image[:,:,:3]), cmap='gray')ax[0, 0].set_title('Original Image', fontsize=20)ax[0, 0].set_xticks([])ax[0, 0].set_yticks([])for i, (name, kernel) in enumerate(kernels.items(), 1):row = i // 3col = i % 3ax[row, col].imshow(kernel, cmap='gray')ax[row, col].set_title(name, fontsize=30)for (j, k), val in np.ndenumerate(kernel):if val < 1:ax[row, col].text(k, j, str(Fraction(val).limit_denominator()), ha='center', va='center', color='red', fontsize=30)else:ax[row, col].text(k, j, str(val), ha='center', va='center', color='red', fontsize=30)plt.tight_layout()plt.show()# 展示滤波器效果
display_filters('dorm_lobby.png')
结果:

述代码中,通过函数get_filters(),我们定义了五种常见的空间滤波器模板,分别为Horizontal Sobel Filter, Vertical Sobel Filter, Edge Detection, Sharpen以及 Box Blur 。接着我们可以将这些滤波器应用于真实图像。
import numpy as np
import matplotlib.pyplot as plt
from fractions import Fraction
from skimage.io import imread, imshow# For Spatial Filters
from scipy.signal import convolve2d
from skimage.color import rgb2gray, gray2rgb
def get_filters():# Define Filters# Horizontal Sobel Filterkernel_hsf = np.array([[1, 2, 1],[0, 0, 0],[-1, -2, -1]])# Vertical Sobel Filterkernel_vsf = np.array([[1, 0, -1],[2, 0, -2],[1, 0, -1]])# Edge Detectionkernel_edge = np.array([[-1, -1, -1],[-1, 8, -1],[-1, -1, -1]])# Sharpenkernel_sharpen = np.array([[0, -1, 0],[-1, 5, -1],[0, -1, 0]])# Box Blurkernel_bblur = (1 / 9.0) * np.array([[1., 1., 1.],[1., 1., 1.],[1., 1., 1.]])# Define the kernelskernels = {'Box Blur': kernel_bblur,'Sharpen': kernel_sharpen,'Horizontal Sobel Filter': kernel_hsf,'Vertical Sobel Filter': kernel_vsf,'Edge Detection': kernel_edge,}return kernelsdef display_filters(image_path):# Read the imageimage = imread(image_path)[:, :, :3]kernels = get_filters()# Create a figure with subplots for each kernelfig, ax = plt.subplots(2, 3, figsize=(20, 15))ax[0, 0].imshow(rgb2gray(image[:, :, :3]), cmap='gray')ax[0, 0].set_title('Original Image', fontsize=20)ax[0, 0].set_xticks([])ax[0, 0].set_yticks([])# Loop over the keys and values in the kernels dictionaryfor i, (name, kernel) in enumerate(kernels.items(), 1):# Determine the subplot indexrow = i // 3col = i % 3# Plot the kernel on the appropriate subplotax[row, col].imshow(kernel, cmap='gray')ax[row, col].set_title(name, fontsize=30)# Loop over the cells in the kernelfor (j, k), val in np.ndenumerate(kernel):if val < 1:ax[row, col].text(k, j,str(Fraction(val).limit_denominator()),ha='center', va='center',color='red', fontsize=30)else:ax[row, col].text(k, j, str(val),ha='center', va='center',color='red', fontsize=30)# Show the plotplt.tight_layout()plt.show()def apply_selected_kernels(image_path, selected_kernels, plot_cols=3):# Define the kernelskernels = get_filters()# Check if the selected kernels are defined, if not raise an exceptionfor k in selected_kernels:if k not in kernels:raise ValueError(f"Kernel '{k}' not defined.")# Read the imageimage = imread(image_path)[:, :, :3]# Apply selected kernels to each color channel of the imageconv_rgb_images = {}for kernel_name in selected_kernels:kernel = kernels[kernel_name]transformed_channels = []for i in range(3):conv_image = convolve2d(image[:, :, i], kernel, 'valid')transformed_channels.append(abs(conv_image))conv_rgb_image = np.dstack(transformed_channels)conv_rgb_image = np.clip(conv_rgb_image, 0, 255).astype(np.uint8)conv_rgb_images[kernel_name] = conv_rgb_image# Display the original and convolved imagesfig, axs = plt.subplots(len(selected_kernels) + 1, plot_cols, figsize=(15, 10))axs[0, 0].imshow(image)axs[0, 0].set_title('Original Image')axs[0, 0].axis('off')for i, kernel_name in enumerate(selected_kernels, 1):axs[i, 0].imshow(conv_rgb_images[kernel_name])axs[i, 0].set_title(kernel_name)axs[i, 0].axis('off')# Hide remaining empty subplots, if anyfor i in range(len(selected_kernels) + 1, len(axs.flat)):axs.flatten()[i].axis('off')plt.tight_layout()plt.show()# 调用display_filters()函数来获取滤波器矩阵
# display_filters('dorm_lobby.png')# 调用apply_selected_kernels()函数,传入图像路径和希望应用的滤波器名称列表
apply_selected_kernels('dorm_lobby.png',['Edge Detection','Horizontal Sobel Filter','Vertical Sobel Filter'])
结果:

当然,我们可以通过以下代码查看其他几种模板的对应效果,代码如下:
# Visualize Edge Detection, Sharpen, and Box Blur
apply_selected_kernels('dog.png', ['Edge Detection','Sharpen', 'Box Blur'], plot_cols=2)
分析与总结
在图像处理中,空间滤波器的作用非常强大。不同的滤波器模板可以用于实现各种图像处理任务,例如边缘检测、图像锐化和模糊等。通过深入了解每种滤波器的特点和应用场景,我们可以更好地运用它们,释放创造力,探索图像处理的无限可能性。通过本文的介绍,希望读者对空间滤波器有了更加清晰的认识,能够在实际应用中灵活运用这些知识,创造出更加引人注目的图像效果。
相关文章:
【OpenCV实现图像:图像处理技巧之空间滤波】
文章目录 概要导入库空间过滤器模板展示效果分析与总结 概要 空间滤波器是数字图像处理中的基本工具之一。它通过在图像的每个像素位置上应用一个特定的滤波模板,根据该位置周围的相邻像素值进行加权操作,从而修改该像素的值。这种加权操作能够突出或模…...
载波通讯电表的使用年限是多久?
随着科技的飞速发展,智能家居、物联网等概念逐渐深入人心,载波通讯电表作为一种新型的智能电表,凭借其低功耗、高可靠性、远程通讯等优点,广泛应用于居民用电、工业生产等领域。那么,载波通讯电表的使用年限是多久呢&a…...
微信小程序多端应用 Donut 多端编译
目前支持 wxml、wxs、js/ts、json,less/sass 等文件类型,资源支持通过配置区分不同平台 wxml中使用 <!-- #if MP --><view class"test-view">wechat</view><!-- #elif IOS --><view class"test-view"…...
调试 Mahony 滤波算法的思考 10
调试 Mahony 滤波算法的思考 1. 说在前面的2.Mahony滤波算法的核心思想3. 易懂的理解 Mahony 滤波算法的过程4. 其他的一些思考5. 民间 9轴评估板 1. 说在前面的 之前调试基于QMI8658 6轴姿态解算的时候,我对Mahony滤波的认识还比较浅薄。初次的学习和代码的移植让…...
Bean——IOC(Github上有代码)
源码 https://github.com/cmdch2017/Bean_IOC.git 获取Bean对象 BeanFactory Bean的作用域 第三方Bean需要用Bean注解 比如消息队列项目中,需要用到Json的消息转换器,这是第三方的Bean对象,所以不能用Component,而要用Bean …...
功能更新|Leangoo领歌免费敏捷工具支持SAFe大规模敏捷框架
Leangoo领歌是一款永久免费的专业的敏捷开发管理工具,提供端到端敏捷研发管理解决方案,涵盖敏捷需求管理、任务协同、进展跟踪、统计度量等。 Leangoo可以支持敏捷研发管理全流程,包括小型团队敏捷开发,规模化敏捷SAFe…...
漏刻有时百度地图API实战开发(1)华为手机无法使用addEventListener click 的兼容解决方案
漏刻有时百度地图API实战开发(1)华为手机无法使用addEventListener click 的兼容解决方案漏刻有时百度地图API实战开发(2)文本标签显示和隐藏的切换开关漏刻有时百度地图API实战开发(3)自动获取地图多边形中心点坐标漏刻有时百度地图API实战开发(4)显示指定区域在移动端异常的解…...
交流信号继电器 DX-31BJ/AC220V JOSEF约瑟 电压启动 面板嵌入式安装
DX系列信号继电器由矩形脉冲激磁,磁钢保持。本继电器为双绕组。工作线圈可为电压型,亦可为电流型。复归线圈为电压型。继电器的工作电流或工作电压为长脉冲,亦可为脉冲不小于20mS的短脉冲。 系列型号 DX-31B信号继电器DX-31BJ信号继电器 D…...
SpringCloudAlibaba系列之Nacos配置管理
目录 说明 认识配置中心 Nacos架构图 Nacos配置管理实现原理 核心源码分析-客户端 核心源码分析-服务端 配置修改的实时通知 主流配置中心对比 小小收获 说明 本篇文章主要目的是从头到尾比较粗粒度的分析Nacos配置中心的一些实现,很多细节没有涉及&#…...
Kyligence Copilot 亮相第六届进博会,增添数智新活力
11月5日,第六届中国国际进口博览会(以下简称“进博会”)在上海国家会展中心盛大启幕,众多新科技、新成果、新展品亮相本届进博会。作为阿斯利康(AstraZeneca)合作伙伴,跬智信息(Kyli…...
MySQL 批量修改表的列名为小写
1、获取脚本 SELECT concat( alter table , TABLE_NAME, change column , COLUMN_NAME, , lower( COLUMN_NAME ), , COLUMN_TYPE, comment \, COLUMN_COMMENT, \; ) AS 脚本 FROM information_schema.COLUMNS WHERE TABLE_SCHEMA 数据库名 and TABLE_NAME表名-- 大写是up…...
ElasticSearch 查询方法示例 java
public List<PricePolicyConditionDTO> queryEs(OrderPriceOutDTO param, List<String> materialCodeList, List<String> categoryCodeList) {BoolQueryBuilder mainQueryBoolBuilder new BoolQueryBuilder();//销售组织if (CharSequenceUtil.isNotEmpty(pa…...
5G毫米波通信中的关键技术
随着5G技术的快速发展,毫米波通信作为其中的一项重要技术,在高速数据传输、低延迟通信和大规模连接等方面具有显著的优势。本文将探讨5G毫米波通信中的关键技术,包括毫米波频段的选择、信号处理技术和MIMO技术等。 一、毫米波频段的选择 毫米…...
2.3.3 交换机的RSTP技术
实验2.3.3 交换机的RSTP技术 一、任务描述二、任务分析三、具体要求四、实验拓扑五、任务实施1.交换机的基本配置。2.开启交换机的STP。3.配置SW3A和SW3B上STP的优先级。将SW3A配置为根交换机,SW3B配置为备用根交换机。4.配置SW2A和SW2B的边缘接口 六、任务验收七、…...
国外访问学者/博士后留学人员反诈骗指南
访问学者/博士后/联合培养博士人员出国后,对当地环境及政策不熟悉,需要提高防范意识,为此,知识人网小编特整理这篇反诈骗指南,提醒留学人员防微杜渐、未雨绸缪。 近日,多国使馆发布相关提醒:不法…...
设计模式之组合模式-创建层次化的对象结构
目录 概述概念主要角色应用场景 组合模式的实现类图NS图基本代码组合模式的精髓意外收获(❀❀) 应用示例-公司组织架构管理需求结构图代码 组合模式的优缺点优点缺点 总结 概述 概念 组合模式是一种结构型设计模式,它允许将对象组合成树形结…...
Windows 有趣功能集锦
Windows 有趣功能集锦 隐藏文件或文件夹 CMD 运行以下命令隐藏 # attrib h <文件或文件夹名称> attrib r h s a 测试显示 # attrib h <文件或文件夹名称> attrib -r -h -s -a 测试使视频显示为图片 准备一个视频文件和一个需要显示的图片先将视频压缩成压缩文…...
【nodejs版playwright】02-支持多套测试环环境执行用例
日常测试中,一套测试用例需支持在不同的测试环境运行,如staging、production 因为涉及不同的测试环境,那使用的环境变量或参数就不一样,如staging登录可能用到的用户名是A,而production可能用到的是b。 所以需要有一个…...
React高阶组件(Higher-Order Components, HOCs)
React 高阶组件 (Higher Order Components, HOCs) 是一种模式,让组件具备一定的扩展能力。它是函数式编程思想在 React 应用程序中的体现。HOCs 可以让你重用组件,提高组件的可复用性。 HOCs 是什么? 高阶组件实际上是一个函数,…...
利用RoboBrowser库和爬虫代理实现微博视频的爬取
技术概述 微博是一个社交媒体平台,用户可以在上面发布和分享各种内容,包括文字、图片、音频和视频。微博视频是微博上的一种重要的内容形式,有时我们可能想要下载微博视频到本地,以便于观看或分析。但是,微博视频并没…...
【RockeMQ】第2节|RocketMQ快速实战以及核⼼概念详解(二)
升级Dledger高可用集群 一、主从架构的不足与Dledger的定位 主从架构缺陷 数据备份依赖Slave节点,但无自动故障转移能力,Master宕机后需人工切换,期间消息可能无法读取。Slave仅存储数据,无法主动升级为Master响应请求ÿ…...
华硕a豆14 Air香氛版,美学与科技的馨香融合
在快节奏的现代生活中,我们渴望一个能激发创想、愉悦感官的工作与生活伙伴,它不仅是冰冷的科技工具,更能触动我们内心深处的细腻情感。正是在这样的期许下,华硕a豆14 Air香氛版翩然而至,它以一种前所未有的方式&#x…...
HarmonyOS运动开发:如何用mpchart绘制运动配速图表
##鸿蒙核心技术##运动开发##Sensor Service Kit(传感器服务)# 前言 在运动类应用中,运动数据的可视化是提升用户体验的重要环节。通过直观的图表展示运动过程中的关键数据,如配速、距离、卡路里消耗等,用户可以更清晰…...
C#学习第29天:表达式树(Expression Trees)
目录 什么是表达式树? 核心概念 1.表达式树的构建 2. 表达式树与Lambda表达式 3.解析和访问表达式树 4.动态条件查询 表达式树的优势 1.动态构建查询 2.LINQ 提供程序支持: 3.性能优化 4.元数据处理 5.代码转换和重写 适用场景 代码复杂性…...
Webpack性能优化:构建速度与体积优化策略
一、构建速度优化 1、升级Webpack和Node.js 优化效果:Webpack 4比Webpack 3构建时间降低60%-98%。原因: V8引擎优化(for of替代forEach、Map/Set替代Object)。默认使用更快的md4哈希算法。AST直接从Loa…...
WebRTC从入门到实践 - 零基础教程
WebRTC从入门到实践 - 零基础教程 目录 WebRTC简介 基础概念 工作原理 开发环境搭建 基础实践 三个实战案例 常见问题解答 1. WebRTC简介 1.1 什么是WebRTC? WebRTC(Web Real-Time Communication)是一个支持网页浏览器进行实时语音…...
MySQL 主从同步异常处理
阅读原文:https://www.xiaozaoshu.top/articles/mysql-m-s-update-pk MySQL 做双主,遇到的这个错误: Could not execute Update_rows event on table ... Error_code: 1032是 MySQL 主从复制时的经典错误之一,通常表示ÿ…...
通过MicroSip配置自己的freeswitch服务器进行调试记录
之前用docker安装的freeswitch的,启动是正常的, 但用下面的Microsip连接不上 主要原因有可能一下几个 1、通过下面命令可以看 [rootlocalhost default]# docker exec -it freeswitch fs_cli -x "sofia status profile internal"Name …...
HybridVLA——让单一LLM同时具备扩散和自回归动作预测能力:训练时既扩散也回归,但推理时则扩散
前言 如上一篇文章《dexcap升级版之DexWild》中的前言部分所说,在叠衣服的过程中,我会带着团队对比各种模型、方法、策略,毕竟针对各个场景始终寻找更优的解决方案,是我个人和我司「七月在线」的职责之一 且个人认为,…...
uniapp 集成腾讯云 IM 富媒体消息(地理位置/文件)
UniApp 集成腾讯云 IM 富媒体消息全攻略(地理位置/文件) 一、功能实现原理 腾讯云 IM 通过 消息扩展机制 支持富媒体类型,核心实现方式: 标准消息类型:直接使用 SDK 内置类型(文件、图片等)自…...
