当前位置: 首页 > news >正文

5 Tensorflow图像识别(下)模型构建

上一篇:4 Tensorflow图像识别模型——数据预处理-CSDN博客

1、数据集标签

上一篇介绍了图像识别的数据预处理,下面是完整的代码:

import os
import tensorflow as tf# 获取训练集和验证集目录
train_dir = os.path.join('cats_and_dogs_filtered/train')
validation_dir = os.path.join('cats_and_dogs_filtered/validation')# 模型参数设置
BATCH_SIZE = 100# 图片尺寸统一为150*150
IMG_SHAPE = 150# 处理图像尺寸
img_generator = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1. / 255, horizontal_flip=True, )train_data_gen = img_generator.flow_from_directory(directory=train_dir,shuffle=True,batch_size=BATCH_SIZE,target_size=(IMG_SHAPE, IMG_SHAPE),class_mode='binary')
val_data_gen = img_generator.flow_from_directory(directory=validation_dir,shuffle=True,batch_size=BATCH_SIZE,target_size=(IMG_SHAPE, IMG_SHAPE),class_mode='binary')

上一篇提到系统的输入是“特征-标签”对,特征是输入的图片,标签就是标记该图片是猫还是狗。上面的代码如何知道输入的照片是猫还是狗?

这里用到了keras的一个函数flow_from_directory(),从目录中生成数据流,子目录会自动帮你生成标签。先看看train训练集的这两个子目录生成的标签是什么:

使用下面代码查看

print(train_data_gen.class_indices)

运行结果:

Found 2000 images belonging to 2 classes.
Found 1000 images belonging to 2 classes.
{'cats': 0, 'dogs': 1}

从运行结果可以看到,猫的照片系统自动打上了0的标签,狗的标签是1。

2、Relu激活函数

构建模型的完整代码如下:

import os
import tensorflow as tf
import numpy as np# 获取训练集和验证集目录
train_dir = os.path.join('cats_and_dogs_filtered/train')
validation_dir = os.path.join('cats_and_dogs_filtered/validation')# 模型参数设置
BATCH_SIZE = 100# 图片尺寸统一为150*150
IMG_SHAPE = 150# 处理图像尺寸
img_generator = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1. / 255, horizontal_flip=True, )# 训练数据
train_data_gen = img_generator.flow_from_directory(directory=train_dir,shuffle=True,batch_size=BATCH_SIZE,target_size=(IMG_SHAPE, IMG_SHAPE),class_mode='binary')# 验证数据
val_data_gen = img_generator.flow_from_directory(directory=validation_dir,shuffle=True,batch_size=BATCH_SIZE,target_size=(IMG_SHAPE, IMG_SHAPE),class_mode='binary')model = tf.keras.Sequential([tf.keras.layers.Conv2D(32, (3, 3), activation='relu', input_shape=(150, 150, 3)),tf.keras.layers.MaxPooling2D(2, 2),tf.keras.layers.Conv2D(64, (3, 3), activation='relu'),tf.keras.layers.MaxPooling2D(2, 2),tf.keras.layers.Conv2D(100, (3, 3), activation='relu'),tf.keras.layers.MaxPooling2D(2, 2),tf.keras.layers.Flatten(),tf.keras.layers.Dense(512, activation='relu'),tf.keras.layers.Dense(2)])model.compile(optimizer='adam',loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),metrics=['accuracy'])EPOCHS = 20
history = model.fit_generator(train_data_gen,steps_per_epoch=int(np.ceil(2000 / float(BATCH_SIZE))),epochs=EPOCHS,validation_data=val_data_gen,validation_steps=int(np.ceil(1000 / float(BATCH_SIZE)))
)

model中加入了和之前不一样的代码:

tf.keras.layers.Conv2D(32, (3, 3), activation='relu', input_shape=(150, 150, 3)),

这里使用了卷积神经,主要是为了突出区分不同对象的特征。一张图片的信息很多的,但往往我们只需要一些特征进行训练就可以了,后续会详细介绍。

现在先介绍 activation='relu',激活函数Relu。

ReLU,全称是线性整流函数(Rectified Linear Unit),是人工神经网络中常用的激活函数。它的图像如下:

当x<=0时,f(x)=0;

当x>0时,f(x)=x;

可以运行代码看看:

例1:

import tensorflow as tfx = -19
print(tf.nn.relu(x))

运行结果:
tf.Tensor(0, shape=(), dtype=int32)

输入-19,使用relu激活函数后的结果为0

例2:

import tensorflow as tfx = 8
print(tf.nn.relu(x))

运行结果:

tf.Tensor(8, shape=(), dtype=int32)

3、损失函数

代码:


model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy']
              )
 

其中损失函数为SparseCategoricalCrossentropy,它是用于计算多分类问题的交叉熵,如果是两个或两个以上的分类问题可以始终这样设置。对其原理及计算过程的读者可以自行百度,此处不详细介绍。

4、训练过程详解
(1)训练准确率

运行上面的完整代码:

可以看到训练集和验证集的loss值在慢慢下降,准确率在提升。

划线部分是最后一个epoch的训练结果:

accuracy:0.8175,也就是说你的神经网络在分类训练数据方面的准确率约为82%;

val_accuracy:0.7160,在验证集的准确率约为72%

(2)batch_size批次大小

代码中batche_size设置的大小为100,意思是每批次生成的样本数量为100。

例如上述代码的train训练集一共有2000张图片,一个周期(epoch)分20个批次(2000/100=20)样本数据进行训练,每个批次训练完后利用优化器更新模型参数。

所以一个周期(epoch)的模型参数更新次数就是20:2000/batch_size=20

截图中红色部分,就是一个epoch分了20个批次用来更新模型参数。

训练结果会因为模型的参数的设置、训练集图片的数量等等原因结果大不相同,学习的时候可以自己动手去调整模型参数来看看训练结果。



 

相关文章:

5 Tensorflow图像识别(下)模型构建

上一篇&#xff1a;4 Tensorflow图像识别模型——数据预处理-CSDN博客 1、数据集标签 上一篇介绍了图像识别的数据预处理&#xff0c;下面是完整的代码&#xff1a; import os import tensorflow as tf# 获取训练集和验证集目录 train_dir os.path.join(cats_and_dogs_filter…...

OpenCV 图像复制和图像区域读写

图像复制 共享数据, 使用 new Mat(srcMat, ...) 和 newMatsrcMat 生成新的Mat都和原Mat共享数据, 也就是说如果修改某一Mat,其他Mat也会随之改变复制全新的Mat, 使用CopyTo() 和 Clone() 方法将生成一个全新的Mat, 新Mat和原Mat不共享数据. 图像区域和点的读写 区域读取: 通过s…...

【分布式事务】初步探索分布式事务的概率和理论,初识分布式事的解决方案 Seata,TC 服务的部署以及微服务集成 Seata

文章目录 一、分布式服务案例1.1 分布式服务 demo1.2 演示分布式事务问题 二、分布式事务的概念和理论2.1 什么是分布式事务2.2 CAP 定理2.3 BASE 理论2.4 分布式事务模型 三、分布式事务解决方案 —— Seata3.1 什么是 Seata3.2 Seata 的架构3.3 Seata 的四种分布式事务解决方…...

es6过滤对象里面指定的不要的值filter过滤

//过滤出需要的值this.dataItemTypeSelectOption response.data.filter(ele > ele.dictValue tree||ele.dictValue float4);//过滤不需要的值this.dataItemTypeSelectOption response.data.filter((item) > {return item.dictValue ! "float4"&&it…...

Docker从入门到上天系列第二篇:传统虚拟机和容器的对比以及Docker的作用以及所解决的问题

大神推荐:作者有幸结识技术大神孙哥为好友获益匪浅,现在把孙哥作为朋友分享给大家。 孙哥链接:孙哥个人主页 作者简介:一个颜值99分,只比孙哥差一点的程序员。 本专栏简介:话不多说,让我们一起干翻Docker 本文章简介:话不多说,让我们讲清楚首先讲清楚Docker是什么 文章…...

共话医疗数据安全,美创科技@2023南湖HIT论坛,11月11日见

11月11日浙江嘉兴 2023南湖HIT论坛 如约而来 深入数据驱动运营管理、运营数据中心建设、数据治理和数据安全、数据资产“入表”等热点、前沿话题 医疗数据安全、数字化转型深耕者—— 美创科技再次深入参与 全新发布&#xff1a;医疗数据安全白皮书 深度探讨&#xff1a;数字…...

乐园要吸引儿童还是家长?万达宝贝王2000万会员的求精之路

2023年6月&#xff0c;万达宝贝王正式迈入“400店时代”。 万达宝贝王在全国200多座城市&#xff0c;以游乐设施、主题活动、成长课程服务10亿多用户&#xff0c;拥有2000多万名会员&#xff0c;是真正的国内儿童乐园领跑者。 当流量时代变成“留量”时代&#xff0c;用户增长…...

ps人像怎么做渐隐的效果?

photoshop怎么制作人像渐隐的图片效果&#xff1f;渐隐效果需要使用渐变来实现&#xff0c;下面我们就来看看详细的教程。 首先&#xff0c;我们打开Photoshop&#xff0c;点击屏幕框选的【打开】&#xff0c;打开一张背景图片。 下面&#xff0c;我们点击左上角【文件】——【…...

为什么IN操作符一般比OR操作符清单执行更快

IN操作符一般比OR操作符清单执行更快的主要原因有以下几点&#xff1a; 查询优化&#xff1a;数据库管理系统通常会针对IN操作符进行更好的查询优化。它可以使用哈希表或二叉搜索树等数据结构来更快地查找匹配的值&#xff0c;从而减少了搜索时间。而OR操作符需要逐个比较每个条…...

GPT-4-Turbo的128K长度上下文性能如何?超过73K Tokens的数据支持依然不太好!

本文原文来自DataLearnerAI官方网站&#xff1a;GPT-4-Turbo的128K长度上下文性能如何&#xff1f;超过73K Tokens的数据支持依然不太好&#xff01; | 数据学习者官方网站(Datalearner)https://www.datalearner.com/blog/1051699526438975 GPT-4 Turbo是OpenAI最新发布的号称…...

osg之黑夜背景地月系显示

目录 效果 代码 效果 代码 /** * Lights test. This application is for testing the LightSource support in osgEarth. * 灯光测试。此应用程序用于测试osgEarth中的光源支持。 */ #include "stdafx.h" #include <osgViewer/Viewer> #include <osgEarth/N…...

持续交付-Jenkinsfile 语法

实现 Pipeline 功能的脚本语言叫做 Jenkinsfile&#xff0c;由 Groovy 语言实现。Jenkinsfile 一般是放在项目根目录&#xff0c;随项目一起受源代码管理软件控制&#xff0c;无需像创建"自由风格"项目一样&#xff0c;每次可能需要拷贝很多设置到新项目&#xff0c;…...

IDEA重新choose source

大概现状是这样&#xff1a;之前有个工程&#xff0c;依赖了别的模块基础包&#xff0c;但当时并没有依赖包的源码工程&#xff0c;因此&#xff0c;通过鼠标左键点进去&#xff0c;看到的是jar包里的class文件&#xff0c;注释什么的都去掉了的&#xff0c;不好看。后面有这个…...

解析虚拟文件系统的调用

Linux 可以支持多达数十种不同的文件系统。它们的实现各不相同&#xff0c;因此 Linux 内核向用户空间提供了虚拟文件系统这个统一的接口&#xff0c;来对文件系统进行操作。它提供了常见的文件系统对象模型&#xff0c;例如 inode、directory entry、mount 等&#xff0c;以及…...

佳能相机拍出来的dat文件怎么修复为正常视频

3-3 佳能相机是普通人用得最多的相机之一&#xff0c;也有一些专业机会用于比较重要的场景&#xff0c;比如婚庆、会议录像、家庭录像使用等。 但作为电子产品&#xff0c;经常会出现一些奇怪的故障&#xff0c;最严重的应该就是拍出来的东西打不开了。 本文案例是佳能相机拍…...

OAuth2.0双令牌

OAuth 2.0是一种基于令牌的身份验证和授权协议&#xff0c;它允许用户授权第三方应用程序访问他们的资源&#xff0c;而不必共享他们的凭据。 在OAuth 2.0中&#xff0c;通常会使用两种类型的令牌&#xff1a;访问令牌和刷新令牌。访问令牌是用于访问资源的令牌&#xff0c;可…...

Django(二、静态文件的配置、链接数据库MySQL)

文章目录 一、静态文件及相关配置1.以登录功能为例2.静态文件3.资源访问4.静态文件资源访问如何解决&#xff1f; 二、静态文件相关配置1. 如何配置静态文件配置&#xff1f;2.接口前缀3. 接口前缀动态匹配4. form表单请求方法补充form表单要注意的点 三、request对象方法reque…...

Linux 本地Yearning SQL审核平台远程访问

文章目录 前言1. Linux 部署Yearning2. 本地访问Yearning3. Linux 安装cpolar4. 配置Yearning公网访问地址5. 公网远程访问Yearning管理界面6. 固定Yearning公网地址 前言 Yearning 简单, 高效的MYSQL 审计平台 一款MYSQL SQL语句/查询审计工具&#xff0c;为DBA与开发人员使用…...

Leetcode—226.翻转二叉树【简单】

2023每日刷题&#xff08;二十四&#xff09; Leetcode—226.翻转二叉树 实现代码 /*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode() : val(0), left(nullptr), right(nullptr) {}* …...

【阿里云】任务2-OSS对象存储教程(找我参加活动可获得京东卡奖励)

目录 前言说明第一步第二步第三步&#xff1a;开通并使用OSS传输加速三、清理第四步-提交作品第五步-提交记录到小程序 前言 本次任务是阿里云官方发出的&#xff0c;每个任务30软妹币&#xff0c;欢迎大家加入我的活动群&#xff0c;门槛很低&#xff0c;所有人都可以参加&…...

【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器

一.自适应梯度算法Adagrad概述 Adagrad&#xff08;Adaptive Gradient Algorithm&#xff09;是一种自适应学习率的优化算法&#xff0c;由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率&#xff0c;适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...

R语言AI模型部署方案:精准离线运行详解

R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...

拉力测试cuda pytorch 把 4070显卡拉满

import torch import timedef stress_test_gpu(matrix_size16384, duration300):"""对GPU进行压力测试&#xff0c;通过持续的矩阵乘法来最大化GPU利用率参数:matrix_size: 矩阵维度大小&#xff0c;增大可提高计算复杂度duration: 测试持续时间&#xff08;秒&…...

JVM虚拟机:内存结构、垃圾回收、性能优化

1、JVM虚拟机的简介 Java 虚拟机(Java Virtual Machine 简称:JVM)是运行所有 Java 程序的抽象计算机,是 Java 语言的运行环境,实现了 Java 程序的跨平台特性。JVM 屏蔽了与具体操作系统平台相关的信息,使得 Java 程序只需生成在 JVM 上运行的目标代码(字节码),就可以…...

【网络安全】开源系统getshell漏洞挖掘

审计过程&#xff1a; 在入口文件admin/index.php中&#xff1a; 用户可以通过m,c,a等参数控制加载的文件和方法&#xff0c;在app/system/entrance.php中存在重点代码&#xff1a; 当M_TYPE system并且M_MODULE include时&#xff0c;会设置常量PATH_OWN_FILE为PATH_APP.M_T…...

人工智能--安全大模型训练计划:基于Fine-tuning + LLM Agent

安全大模型训练计划&#xff1a;基于Fine-tuning LLM Agent 1. 构建高质量安全数据集 目标&#xff1a;为安全大模型创建高质量、去偏、符合伦理的训练数据集&#xff0c;涵盖安全相关任务&#xff08;如有害内容检测、隐私保护、道德推理等&#xff09;。 1.1 数据收集 描…...

DeepSeek越强,Kimi越慌?

被DeepSeek吊打的Kimi&#xff0c;还有多少人在用&#xff1f; 去年&#xff0c;月之暗面创始人杨植麟别提有多风光了。90后清华学霸&#xff0c;国产大模型六小虎之一&#xff0c;手握十几亿美金的融资。旗下的AI助手Kimi烧钱如流水&#xff0c;单月光是投流就花费2个亿。 疯…...

数据结构:泰勒展开式:霍纳法则(Horner‘s Rule)

目录 &#x1f50d; 若用递归计算每一项&#xff0c;会发生什么&#xff1f; Horners Rule&#xff08;霍纳法则&#xff09; 第一步&#xff1a;我们从最原始的泰勒公式出发 第二步&#xff1a;从形式上重新观察展开式 &#x1f31f; 第三步&#xff1a;引出霍纳法则&…...

React父子组件通信:Props怎么用?如何从父组件向子组件传递数据?

系列回顾&#xff1a; 在上一篇《React核心概念&#xff1a;State是什么&#xff1f;》中&#xff0c;我们学习了如何使用useState让一个组件拥有自己的内部数据&#xff08;State&#xff09;&#xff0c;并通过一个计数器案例&#xff0c;实现了组件的自我更新。这很棒&#…...

CppCon 2015 学习:Reactive Stream Processing in Industrial IoT using DDS and Rx

“Reactive Stream Processing in Industrial IoT using DDS and Rx” 是指在工业物联网&#xff08;IIoT&#xff09;场景中&#xff0c;结合 DDS&#xff08;Data Distribution Service&#xff09; 和 Rx&#xff08;Reactive Extensions&#xff09; 技术&#xff0c;实现 …...