python求解优化问题的几个例子
目录
1、最优化问题
2、线性规划
3、无约束优化
3.1单变量
3.2多变量
1、最优化问题
使用scipy库中的minimize函数来求解最优化问题。在这个例子中,我们定义了一个目标函数 objective
,其形式为x1^2 + x2^2;以及一个约束条件 constraint
,即x1 + x2 -1 = 0。然后,我们通过调用minimize
函数来求解最小值问题。
from scipy.optimize import minimize# 定义目标函数
def objective(x):return x[0]**2 + x[1]**2# 定义约束条件
def constraint(x):return x[0] + x[1] - 1# 定义初始猜测值
x0 = [0, 0]# 定义变量边界
bounds = ((-10, 10), (-10, 10))# 定义约束条件字典
constraint_dict = {'type': 'eq', 'fun': constraint}# 求解最优化问题
result = minimize(objective, x0, method='SLSQP', bounds=bounds, constraints=constraint_dict)# 打印求解结果
print("最优解:", result.x)
print("最优目标值:", result.fun)
最优解: [0.5 0.5]
最优目标值: 0.5
2、线性规划
可以使用PuLP库求解线性规划问题。首先,我们需要安装PuLP库。可以使用以下命令在终端或命令提示符中安装:
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple PuLP
求解以下线性规划问题:
maximize 2x + y
subject to:
3x - y <= 6
x + 2y <= 4
x >= 0, y >= 0
from pulp import *# 创建问题实例
prob = LpProblem("Simple_LP_Problem", LpMaximize)# 定义决策变量
x = LpVariable("x", lowBound=0)
y = LpVariable("y", lowBound=0)# 定义目标函数
prob += 2*x + y# 定义约束条件
prob += 3*x - y <= 6
prob += x + 2*y <= 4# 求解问题
prob.solve()# 打印结果
print("Status:", LpStatus[prob.status])
print("Optimal Solution:")
for var in prob.variables():print(var.name, "=", var.varValue)
print("Optimal Objective Value =", value(prob.objective))
Status: Optimal
Optimal Solution:
x = 2.2857143
y = 0.85714286
Optimal Objective Value = 5.42857146
3、无约束优化
3.1单变量
import numpy as np
from scipy.optimize import minimize# 定义目标函数
def objective(x):return x ** 2# 定义初始猜测值
x0 = 0.5# 定义优化问题
constraints = None # 这里我们没有约束条件,所以设置为None
options = {'disp': True} # 显示优化结果
result = minimize(objective, x0, method='Powell', constraints=constraints, options=options)# 输出优化结果
print("Optimized value: ", result.fun)
print("Optimized point: ", result.x)
Optimized value: 0.0
Optimized point: [0.]
3.2多变量
import numpy as np
from scipy.optimize import minimize# 定义目标函数
def objective(x):x1, x2 = xreturn (x1**2-1)**2 + x1**2+x2**2-2*x1# 定义约束条件为无约束优化问题
constraints = None# 定义初始点
x0 = np.array([1, 1])# 求解优化问题
result = minimize(objective, x0, method='BFGS', constraints=constraints)# 输出结果
print("最优解:", result.x)
print("最小值:", result.fun)
最优解: [ 1.00000021e+00 -2.06553830e-09]
最小值: -0.9999999999997886
相关文章:
python求解优化问题的几个例子
目录 1、最优化问题 2、线性规划 3、无约束优化 3.1单变量 3.2多变量 1、最优化问题 使用scipy库中的minimize函数来求解最优化问题。在这个例子中,我们定义了一个目标函数 objective,其形式为x1^2 x2^2;以及一个约束条件 constraint&…...

HP惠普暗影精灵9P OMEN 17.3英寸游戏本17-cm2000(70W98AV)原装出厂Windows11-22H2系统镜像
链接:https://pan.baidu.com/s/1gJ4ZwWW2orlGYoPk37M-cg?pwd4mvv 提取码:4mvv 惠普暗影9Plus笔记本电脑原厂系统自带所有驱动、出厂主题壁纸、 Office办公软件、惠普电脑管家、OMEN Command Center游戏控制中心等预装程序 所需要工具:3…...
❤ Uniapp使用Ucharts(二)(组件类型)
❤ Uniapp使用Ucharts(二)(秋云组件类型) 一、折线图 1、结构 <template><view class"charts-box"><qiun-data-charts type"area":opts"opts":chartData"chartData"/&…...

Linux Vim批量注释和自定义注释
使用 Vim 编辑 Shell 脚本,在进行调试时,需要进行多行的注释,每次都要先切换到输入模式,在行首输入注释符"#"再退回命令模式,非常麻烦。连续行的注释其实可以用替换命令来完成。 换句话说,在指定…...

虚幻C++基础 day3
常见的游戏机制 Actor机关门 创建一个Actor类,添加两个静态网格与一个触发器 UBoxComponentUStaticMeshComponent 头文件: #include “Components/BoxComponent.h”#include “Components/StaticMeshComponent.h” TriggerDoor.h // Fill out your …...

第26期 | GPTSecurity周报
GPTSecurity是一个涵盖了前沿学术研究和实践经验分享的社区,集成了生成预训练Transformer(GPT)、人工智能生成内容(AIGC)以及大型语言模型(LLM)等安全领域应用的知识。在这里,您可以…...

(动手学习深度学习)第7章 稠密连接网络---DenseNet
目录 DenseNetDenseNet的优点:DenseNet的改进思路总结 DenseNet代码实现 DenseNet DenseNet的优点: 省参数。在 ImageNet 分类数据集上达到同样的准确率,DenseNet 所需的参数量不到 ResNet 的一半。对于工业界而言,小模型可以显著…...

UART编程(寄存器)
1. 串口编程步骤 1.1 看原理图确定引脚 有很多串口,使用哪一个?看原理图确定 1.2 配置引脚为UART功能 至少用到发送、接收引脚:txd、rxd 需要把这些引脚配置为UART功能,并使能UART模块 1.3 设置串口参数 有哪些参数…...

事务码增删查改表数据
常用事务码 SE11 SE14 SE16 SE16N SM30 SE11:查看数据库表/修改表中字段数量_类型/查看表中数据/设置表为可维护或不可维护 SE14:查看数据库表的创建日期创建用户名/查看表中字段/删除表中全部数据(只能全部删) SE16:查看数据库表/对可维护数据库表进行数据维护/SE16通过调试…...

vue开发环境搭建部署(mac版)
前言 目前后端工作越来越少了,年底了,为了先过验收。项目负责人、产品、需求制定的方案就是先做假页面,所以前端的活多点。 其实现在不喜欢搞前端,原因很多,但是感觉现在似乎流行的码林绝学又是九九归一的瓶颈期…...
Java【算法 05】通过时间获取8位验证码(每两个小时生成一个)源码分享
通过时间获取验证码 1.需求2.代码实现2.1 依赖2.2 时间参数处理方法2.3 截取验证码方法2.4 验证方法 3.总结 1.需求 要求是很简单的,每个验证码的有效时间是2小时,这个并不是收到验证码开始计时的,而是每个两小时的时间段使用的是相同的验证…...

微服务 Spring Cloud 5,一图说透Spring Cloud微服务架构
目录 一、域名系统DNS二、LVS(Linux Virtual Server),Linux虚拟服务器三、CDN静态资源四、Nginx反向代理服务器1、Nginx的主要作用体现在以下几个方面:2、Nginx静态资源服务和CDN静态资源服务,如何选择? 五、Gateway网…...

conda清华源安装cuda12.1的pytorch
使用pytorch官方提供的conda command奇慢无比,根本装不下来(科学的情况下也这样) 配置一下清华源使用清华源装就好了 清华源:https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/ 配置方法:conda config --…...

安徽首届道医传承十八绝技发布会在合肥成功举办
近日,在安徽合肥举行了首届道医传承十八绝技发布会,本次会议由安徽渡罗门生物科技有限公司、北京道武易医文化传播有限公司、楼观台道医文化研究院联合举办。现场吸引了来自全国各地民族医学领域的专家学者参与讨论与交流。本次会议旨在促进道医的交流与…...

一款功能强大的web目录扫描器专业版
dirpro 简介 dirpro 是一款由 python 编写的目录扫描器,操作简单,功能强大,高度自动化。 自动根据返回状态码和返回长度,对扫描结果进行二次整理和判断,准确性非常高。 已实现功能 可自定义扫描线程 导入url文件进…...

【Linux网络】网卡配置与修改主机名,做好基础系统配置
目录 一、网络配置命令 1、查看网卡信息ifconfig Linux永久修改ip地址 2、主机名修改 ①hostname 临时修改主机名 ②永久修改主机名 第一种,使用命令修改 第二种:修改配置文件 3、路由信息 再来拓展一下,永久修改路由表信息 4、检查…...

三大基础排序 -选择排序、冒泡排序、插入排序
排序算法 文章目录 冒泡排序算法步骤动图代码优化总结 选择排序算法步骤动图代码总结 插入排序算法步骤动图代码总结 排序算法,就是使一串记录,按照其中的某个或某些关键字的大小,递增或递减的排列起来的操作。一般默认排序是按照由小到大即…...

el-form添加自定义校验规则校验el-input只能输入数字
0 效果 1 代码 {1,5}是用来限制小数点后几位的 addFormRules: {investAmount: [{ validator: checkInvestAmount, trigger: blur }], }, const checkInvestAmount (rule, value, callback) > {if (value ! && value ! null && value ! undefined) {if (/…...
ios 开发问题小集 [持续更新]
文章目录 一、如何给列表上的UITableViewCell添加手势二、获取NSIndexPath的方式2.1 根据row, section 来创建2.2 根据point 的位置来找到 indexPath三、tableView在Grouped样式下,设置表头表尾空白一、如何给列表上的UITableViewCell添加手势 给cell添加手势,大家都会这么做…...

idea Plugins 搜索不到插件
Settings — System Settings — HTTP Proxy,打开HTTP Proxy 页面,设置自动发现代理: 勾选Atuto-detect proxy settings,勾选Automatic proxy configuration URL,输入: https://plugins.jetbrains.com/id…...

基于FPGA的PID算法学习———实现PID比例控制算法
基于FPGA的PID算法学习 前言一、PID算法分析二、PID仿真分析1. PID代码2.PI代码3.P代码4.顶层5.测试文件6.仿真波形 总结 前言 学习内容:参考网站: PID算法控制 PID即:Proportional(比例)、Integral(积分&…...
Java如何权衡是使用无序的数组还是有序的数组
在 Java 中,选择有序数组还是无序数组取决于具体场景的性能需求与操作特点。以下是关键权衡因素及决策指南: ⚖️ 核心权衡维度 维度有序数组无序数组查询性能二分查找 O(log n) ✅线性扫描 O(n) ❌插入/删除需移位维护顺序 O(n) ❌直接操作尾部 O(1) ✅内存开销与无序数组相…...
1688商品列表API与其他数据源的对接思路
将1688商品列表API与其他数据源对接时,需结合业务场景设计数据流转链路,重点关注数据格式兼容性、接口调用频率控制及数据一致性维护。以下是具体对接思路及关键技术点: 一、核心对接场景与目标 商品数据同步 场景:将1688商品信息…...
sqlserver 根据指定字符 解析拼接字符串
DECLARE LotNo NVARCHAR(50)A,B,C DECLARE xml XML ( SELECT <x> REPLACE(LotNo, ,, </x><x>) </x> ) DECLARE ErrorCode NVARCHAR(50) -- 提取 XML 中的值 SELECT value x.value(., VARCHAR(MAX))…...

selenium学习实战【Python爬虫】
selenium学习实战【Python爬虫】 文章目录 selenium学习实战【Python爬虫】一、声明二、学习目标三、安装依赖3.1 安装selenium库3.2 安装浏览器驱动3.2.1 查看Edge版本3.2.2 驱动安装 四、代码讲解4.1 配置浏览器4.2 加载更多4.3 寻找内容4.4 完整代码 五、报告文件爬取5.1 提…...

蓝桥杯3498 01串的熵
问题描述 对于一个长度为 23333333的 01 串, 如果其信息熵为 11625907.5798, 且 0 出现次数比 1 少, 那么这个 01 串中 0 出现了多少次? #include<iostream> #include<cmath> using namespace std;int n 23333333;int main() {//枚举 0 出现的次数//因…...

ABAP设计模式之---“简单设计原则(Simple Design)”
“Simple Design”(简单设计)是软件开发中的一个重要理念,倡导以最简单的方式实现软件功能,以确保代码清晰易懂、易维护,并在项目需求变化时能够快速适应。 其核心目标是避免复杂和过度设计,遵循“让事情保…...
Redis的发布订阅模式与专业的 MQ(如 Kafka, RabbitMQ)相比,优缺点是什么?适用于哪些场景?
Redis 的发布订阅(Pub/Sub)模式与专业的 MQ(Message Queue)如 Kafka、RabbitMQ 进行比较,核心的权衡点在于:简单与速度 vs. 可靠与功能。 下面我们详细展开对比。 Redis Pub/Sub 的核心特点 它是一个发后…...

android13 app的触摸问题定位分析流程
一、知识点 一般来说,触摸问题都是app层面出问题,我们可以在ViewRootImpl.java添加log的方式定位;如果是touchableRegion的计算问题,就会相对比较麻烦了,需要通过adb shell dumpsys input > input.log指令,且通过打印堆栈的方式,逐步定位问题,并找到修改方案。 问题…...

WebRTC调研
WebRTC是什么,为什么,如何使用 WebRTC有什么优势 WebRTC Architecture Amazon KVS WebRTC 其它厂商WebRTC 海康门禁WebRTC 海康门禁其他界面整理 威视通WebRTC 局域网 Google浏览器 Microsoft Edge 公网 RTSP RTMP NVR ONVIF SIP SRT WebRTC协…...