学者观察 | 联邦学习与区块链、大模型等新技术的融合与挑战-北京航空航天大学童咏昕
导语
当下,数据已成为经济社会发展中不可或缺的生产要素,正在发挥越来越大的价值。但是在数据使用过程中,由于隐私、合规或者无法完全信任合作方等原因,数据的拥有者并不希望彻底和他方共享数据。为解决原始数据自主可控与数据跨区域流动之间的矛盾,联邦学习这项技术应运而生。
在北京航空航天大学教授童咏昕看来,联邦学习和区块链技术在打破多方数据孤岛、实现数据共享的场景中都发挥了重要作用,实现了“原始数据不出域,数据可用不可见”的效果。以我国自主创新的区块链软硬件技术体系“长安链”为例,通过与联邦学习技术的深度融合,突破了数字经济中的数据“暗区”,实现了数据价值的释放,通过垂域大模型等场景应用,提升了数字经济的活力。

学者寄语
面向国家数字经济发展重大战略需求,联邦学习与区块链等新技术的融合发展大有可为!希望长安链可以不断开拓创新,更进一步。
——北京航空航天大学 教授 童咏昕
「理解联邦学习」
联邦学习是一种隐私保护的分布式机器学习技术。通俗的理解好比小羊吃草,传统的机器学习方式是把数据汇集到一起再进行处理,就像各个牧场把草集中到一个地方喂小羊,小羊生长越来越健壮,也就是模型越来越强大。联邦学习就好比牵着小羊去各个牧场吃草,让羊越来越健壮,数据不动模型动,数据虽不出域但同样释放价值。
如今,联邦学习已经在智慧金融、智慧医疗、智慧城市等领域展现其应用价值。例如金融联合风控、疾病联合预测等,我们日常生活中经常使用的手机地图聚合网约车平台,也是联邦学习和时空数据挖掘的典型应用:各平台以联邦学习的方式在敏感数据不出域的条件下实现跨平台信息共享,合理地分配各平台订单及运力。
「联邦学习与区块链,“正交”技术深度融合」
联邦学习与区块链是“正交”的两个方向。区块链就像去中心化的账本,它解决的是多方协作的可信问题。联邦学习本质上是分布式机器学习的一类,使数据在不出本地的前提下联合学习。虽然从理论基础上来讲这两个技术是正交的,但是二者存在很多共性:都是分布式的计算,都能够实现数据共享。因此,二者的融合点在于可信联邦学习。
联邦学习与区块链的融合点在于可信联邦学习。联邦学习中最有代表性的算法为联邦平均算法(FedAvg),其中所有中间结果(梯度)均需上传传到中心服务器进行计算,所以从根本上它依然是一个中心化的分布式计算方法,算法的安全性依赖于中心服务器的可信度。而区块链之所以受到大家欢迎,是因为在很多业务场景中去中心化的技术框架更具可信度。区块链与中心化的联邦学习互补成为去中心化的联邦学习,这是非常有价值的。
至此大家可能不禁要问:为什么在现在有影响力的联邦学习开源社区里几乎没有基于区块链的联邦学习项目?我认为是因为缺少区块链领域的顶尖的研究机构对区块链和联邦学习深度融合的探索,这是一片蓝海。目前,未来区块链与隐私计算高精尖创新中心正在围绕长安链进行开拓,着力研发出有效的、开源的、联邦学习与区块链深度融合的系统,有希望填补这块空白。当然,这对系统构架来讲难度很高,比如,区块链的吞吐量和联邦学习的大梯度之间怎么耦合,才能既不浪费计算资源又能控制通信量,其中有非常多的工程和科学的问题需要解决。我们来自多个方向的科学家正在持续攻关。
「联邦学习与大模型,互补放大价值」
联邦学习与大模型的结合是近期热门的研究问题。大模型是生成式学习中的前沿技术,很多人认为把数据汇在一起训练大模型已经非常耗费硬件资源和算力,采用联邦学习这种分布式方式联合多方数据进行训练,增大通信量是不是画蛇添足?其实不然。
现在的大模型训练主要使用的是公开的公有域数据,但高质量的数据往往存储在不对外公开的私域里,比如涉及隐私的政务数据,科研机构的数据,行业数据,这些数据质量更高,但无法在保持数据自治权的前提下轻易共享参与到基础通用大模型的训练中。联邦学习会对基础通用大语言模型训练产生助力,用私域的高质量数据解决公域数据质量不足的问题。
两种技术的另一个结合点是垂域大模型。基础大模型的体量非常庞大,例如meta开源的Llama 2有着百亿的参数量,我们国家的大型科技企业也拥有100亿参数级别的大模型。大模型对于算力的要求非常高,500张显卡已经是基础配置,每张显卡价格数万元,训练成本高昂,一般的科研机构或者高校很难持续投入。而在基础大模型之上注入特定领域数据使领域内的系统更智能,这样的垂域大模型正在构筑未来“办公自动化”的新形态。例如走失人口或犯罪分子的追踪任务,只需要在公安系统中输入相关的嫌疑人特征,系统就能够联合当地所有摄像头数据库,通过大模型进行人员锁定;又如一些基础的公文撰写任务,办公人员仅需简单描述一下需求之后可以自动生成,大幅提升了效率。在这个过程中,联邦学习技术使得行业高价值数据得以充分利用,同时又确保了数据不出域。因此联邦学习和大模型的技术融合在很多领域大有可为,相信未来一两年之内会不断涌现成熟的产品。
「面向未来的联邦学习,须跨多道栏」
跨机构间数据共享仍需引导激励。联邦学习是一种作用于生产关系的技术,越面向多个参与主体的时候越能发挥更大的价值。在当前的法律和隐私保护框架下,如何能更好地推动跨机构间的合作是联邦学习面临的问题。
首先,联邦学习等技术领域亟待建立完备的法律基础。“数据可用不可见、原始数据不出域”是一个描述性术语,从计算机语言来讲“差分隐私保护”、“匿名化”、“脱敏”“安全多方计算”都是密码学或隐私计算相关的术语,而在监管与合规的过程中计算机技术术语与法律术语之间存在理解的壁垒,无法达到法律条款与技术之间的映射,这催生出了一个很火的方向“计算法学”,为联邦学习等隐私计算相关技术夯实法律基础,以应对多方机构间的权益纠纷,这是需要学者和法律工作者们共同推动的工作。
此外,政府单位或者行业协会需要引导、推动建设激励机制。解决数据自治和跨域协同之间矛盾的根本在于有一个好的激励机制,联邦的过程存在多方博弈,这种博弈存在着竞争与合作,双方在博弈的过程中是非理性的,每一方都想少输出、多获益。建设一个好的激励机制,以保证贡献数据多、价值大的主体能够获益多,将会促进数据要素价值流通的实现,营造良性的数字经济发展环境。
联邦学习理论研究仍需夯实基础。目前我国联邦学习技术处于领跑状态。这一技术最早是在国外提出,随后国内一批学者很快就参与到联邦学习的研究中,并在其技术发展中起到了引领作用,具有较强的国际影响力。比如,联邦学习在IEEE的第一个国际标准就是由我国牵头制定,第一本联邦学习英文教材也来自我国,谷歌学术上被引用量最高的论文也来自我国。
我国联邦学习的飞速发展在于国家对于数字经济的高度重视。“个人信息保护法”使个人数据隐私和安全保护有了法律基础,连续发布的“数据二十条”等政策为构建数据基础制度体系指明了方向,各地数据交易所的建设为联邦学习提供了天然的应用土壤,联邦学习成为了数据要素流通与交易有代表性的交易范式之一。此外,国家近年来大幅推动数字化转型,智慧政府、智慧城市、智慧交通等产业也在为新的信息技术应用提供了机会,联邦学习在应用方面相较其他国家有很大优势。
虽然在技术及应用上我国已取得了一些成绩,但仍存在问题:我国在该领域的研究优势主要集中于应用,在基础理论研究上与国外还有较大差距。
因此,我国联邦学习的发展仍需持之以恒加强基础理论研究。通过建立合作与交流平台,推动国内外高校、科研机构和创新中心间的知识共享与学术交流;为年轻人提供更多的学术机会和支持,为联邦学习培养人才后备军;鼓励学者进行基础研究、创新研究,设立奖项或资助计划以激励学者进行高水平的学术研究,培养出优秀的学术人才。要让更多的人加入到联邦学习的基础理论研究中来,还需要政府、高校、科研院共同营造领域内更加良好的学术氛围。
「数据新动能」学者观察
数据作为数字经济发展的核心引擎,如何激发动能、释放价值,驱动数字经济高质量发展?长安链开源社区发起的「数据新动能」学者观察栏目邀请专家学者分享数字经济、数字技术的研究、思考与展望,共同探索数字经济“密码”。
拥抱区块链技术,探索数字经济“密码”
聚焦数字经济发展
追踪尖端学术前沿
探讨新潮科技理念
捕捉鲜活产业动态
相关文章:
学者观察 | 联邦学习与区块链、大模型等新技术的融合与挑战-北京航空航天大学童咏昕
导语 当下,数据已成为经济社会发展中不可或缺的生产要素,正在发挥越来越大的价值。但是在数据使用过程中,由于隐私、合规或者无法完全信任合作方等原因,数据的拥有者并不希望彻底和他方共享数据。为解决原始数据自主可控与数据跨…...
ubuntu连接蓝牙耳机
本人也是经历了重重困难,特写此篇希望对读者能够带来帮助 1. 编辑 /etc/bluetooth/main.conf 文件,设定ControllerMode bredr 这一步使用vim编写完成后,保存退出的时候,会显示说没有修改权限,执行以下命令 sudo chm…...
长春理工大学漏洞报送证书
获取来源:edusrc(教育漏洞报告平台) url:主页 | 教育漏洞报告平台 兑换价格:10金币 获取条件:提交长春理工大学任意中危或以上级别漏洞...
Excel和Chatgpt是最好的组合。
内容来源:bitfool1 Excel和Chatgpt是最好的组合。 您可以轻松地自动化数据处理。 我向您展示如何在不打字公式的情况下将AI与Excel一起使用: 建立chatgpt 主要目的是使用Chatgpt自动编写Excel宏。 这消除了键入公式的需求,并让您在自然语言…...
Java用Jsoup库实现的多线程爬虫代码
因为没有提供具体的Python多线程跑数据的内容,所以我们将假设你想要爬取的网站是一个简单的URL。以下是一个基本的Java爬虫程序,使用了Jsoup库来解析HTML和爬虫ip信息。 import org.jsoup.Jsoup; import org.jsoup.nodes.Document; import org.jsoup.nod…...
layui控件开发,实现下拉搜索从数据库获取数据
1 标签部分使用带搜索的下拉框 <div class"layui-inline"><label class"layui-form-label">单位</label><div class"layui-input-inline"><select name"org" lay-search id"org_dwbh" lay-filt…...
让代码变美的第一天 - 观察者模式
文章目录 丑陋的模样变美步骤第一步 - 基本预期第二步 - 核心逻辑梳理第三步 - 重构重构1 - 消息定义重构2 - 消息订阅重构3 - 消息发布 高级用法按顺序订阅异步订阅多消息订阅 丑陋的模样 当我们开发一个功能,代码可能如下: private void test() {fun…...
微服务-网关设计
文章目录 引言I 网关部署java启动jar包II 其他服务部署细节2.1 服务端api 版本号III 网关常规设置3.1 外部请求系统服务都需要通过网关访问3.2 第三方平台回调校验文件的配置IV 微服务日志跟踪4.1 打印线程ID4.2 封装线程池任务执行器4.3 将自身MDC中的数据复制给子线程4.4 微服…...
WxJava使用lettuce的redis实现access_token的共享
使用WxJava微信开发时,调用接口获取access_token,如果多个服务部署,就需要使用到缓存来保存access_token以达到重复利用,WxJava 也提供了相关的实现类WxMaRedisConfigImpl,但是这个是基于jedis客户端的实现,…...
干货:如何运作一个全新品牌?
新品牌推广是真金白银的事儿,在你不了解情况的时候,最好以观察为主,不要不管三七二十一就动手。小马识途营销顾问建议创业者首先要找到自己的细分市场,按如下步骤去运作一个新品牌。 第一步、社群试水 先建立一个目标受众的社群&a…...
TCP/IP卷一详解第二章Internet地址结构概要
在这一章中介绍了Internet中使用的网络层地址(也就是IP地址),还有如何为Internet中的设备分配地址,以及各种类型的地址等等…… 一、IP地址的表示 为大家所常见的有IPV4地址和IPV6地址,但在IPV4地址中,通…...
小程序 打开方式 页面效果 表单页面 点击跳到详情页 图标 获取后台数据 进行页面渲染
请求地址:geecg-uniapp 同源策略 数据请求 获取后台数据 ui库安装 冲突解决(3)-CSDN博客 一.uniapp转小程序 (1) 运行微信开发工具 (2) 配置id 然后运行 打开小程序 路径 E:\通\uniapp-jeecg\unpackage\dist\d…...
一个“Hello, World”Flask应用程序
如果您访问Flask网站,会看到一个非常简单的示例应用程序,只有5行代码。为了不重复那个简单的示例,我将向您展示一个稍微复杂一些的示例,它将为您编写大型应用程序提供一个良好的基础结构。 应用程序将存在于包中。在Python中&…...
计算机丢失mfc100.dll如何恢复,详细解析mfc100.dll文件丢失解决方法
在计算机使用过程中,我们可能会遇到一些错误提示,比如“mfc100.dll丢失”。这是因为动态链接库(DLL)文件是Windows操作系统的重要组成部分,它们包含了许多程序运行所需的函数和数据。当这些DLL文件丢失或损坏时&#x…...
分享一本让你真正理解深度学习的书
关注微信公众号:人工智能大讲堂,后台回复udl获取pdf文档。 今天要分享的书是Understanding Deep Learning,作者是西蒙普林斯,英国巴斯大学的荣誉教授,其个人学术能力相当强大,在AI领域有着深厚的学术造诣。…...
Apache APISIX Dashboard 未经认证访问导致 RCE(CVE-2021-45232)漏洞复现
漏洞描述 Apache APISIX 是一个动态、实时、高性能的 API 网关,而 Apache APISIX Dashboard 是一个简单易用的前端界面,用于管理 Apache APISIX。 在 2.10.1 之前的 Apache APISIX Dashboard 中,Manager API 使用了两个框架,并在…...
Git 安全警告修复手册:解决 `fatal: detected dubious ownership in repository at ` 问题 ️
🌷🍁 博主猫头虎 带您 Go to New World.✨🍁 🦄 博客首页——猫头虎的博客🎐 🐳《面试题大全专栏》 文章图文并茂🦕生动形象🦖简单易学!欢迎大家来踩踩~🌺 &a…...
【MySQL事务篇】多版本并发控制(MVCC)
多版本并发控制(MVCC) 文章目录 多版本并发控制(MVCC)1. 概述2. 快照读与当前读2.1 快照读2.2 当前读 3. MVCC实现原理之ReadView3.1 ReadView概述3.2 设计思路3.3 ReadView的规则3.4 MVCC整体操作流程 4. 举例说明4.1 READ COMMITTED隔离级别下4.2 REPEATABLE READ隔离级别下 …...
拆分代码 + 动态加载 + 预加载,减少首屏资源,提升首屏性能及应用体验
github 原文地址 我们看一些针对《如何提升应用首屏加载体验》的文章,提到的必不可少的措施,便是减少首屏幕加载资源的大小,而减少资源大小必然会想到按需加载措施。本文提到的便是一个基于webpack 插件与 react 组件实现的一套研发高度自定…...
在 Vue3 中使用 mitt 进行组件通信
npm 包地址 mitt 是一个轻量级的 JavaScript 事件触发器, 只有200b。有基本的事件触发、订阅和取消订阅功能,还支持用命名空间来进行更高级的事件处理。 功能特点: Microscopic —— weighs less than 200 bytes gzippedUseful —— a wil…...
生成xcframework
打包 XCFramework 的方法 XCFramework 是苹果推出的一种多平台二进制分发格式,可以包含多个架构和平台的代码。打包 XCFramework 通常用于分发库或框架。 使用 Xcode 命令行工具打包 通过 xcodebuild 命令可以打包 XCFramework。确保项目已经配置好需要支持的平台…...
多模态2025:技术路线“神仙打架”,视频生成冲上云霄
文|魏琳华 编|王一粟 一场大会,聚集了中国多模态大模型的“半壁江山”。 智源大会2025为期两天的论坛中,汇集了学界、创业公司和大厂等三方的热门选手,关于多模态的集中讨论达到了前所未有的热度。其中,…...
微信小程序之bind和catch
这两个呢,都是绑定事件用的,具体使用有些小区别。 官方文档: 事件冒泡处理不同 bind:绑定的事件会向上冒泡,即触发当前组件的事件后,还会继续触发父组件的相同事件。例如,有一个子视图绑定了b…...
R语言AI模型部署方案:精准离线运行详解
R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...
蓝牙 BLE 扫描面试题大全(2):进阶面试题与实战演练
前文覆盖了 BLE 扫描的基础概念与经典问题蓝牙 BLE 扫描面试题大全(1):从基础到实战的深度解析-CSDN博客,但实际面试中,企业更关注候选人对复杂场景的应对能力(如多设备并发扫描、低功耗与高发现率的平衡)和前沿技术的…...
学校招生小程序源码介绍
基于ThinkPHPFastAdminUniApp开发的学校招生小程序源码,专为学校招生场景量身打造,功能实用且操作便捷。 从技术架构来看,ThinkPHP提供稳定可靠的后台服务,FastAdmin加速开发流程,UniApp则保障小程序在多端有良好的兼…...
Cloudflare 从 Nginx 到 Pingora:性能、效率与安全的全面升级
在互联网的快速发展中,高性能、高效率和高安全性的网络服务成为了各大互联网基础设施提供商的核心追求。Cloudflare 作为全球领先的互联网安全和基础设施公司,近期做出了一个重大技术决策:弃用长期使用的 Nginx,转而采用其内部开发…...
ServerTrust 并非唯一
NSURLAuthenticationMethodServerTrust 只是 authenticationMethod 的冰山一角 要理解 NSURLAuthenticationMethodServerTrust, 首先要明白它只是 authenticationMethod 的选项之一, 并非唯一 1 先厘清概念 点说明authenticationMethodURLAuthenticationChallenge.protectionS…...
uniapp微信小程序视频实时流+pc端预览方案
方案类型技术实现是否免费优点缺点适用场景延迟范围开发复杂度WebSocket图片帧定时拍照Base64传输✅ 完全免费无需服务器 纯前端实现高延迟高流量 帧率极低个人demo测试 超低频监控500ms-2s⭐⭐RTMP推流TRTC/即构SDK推流❌ 付费方案 (部分有免费额度&#x…...
数据库分批入库
今天在工作中,遇到一个问题,就是分批查询的时候,由于批次过大导致出现了一些问题,一下是问题描述和解决方案: 示例: // 假设已有数据列表 dataList 和 PreparedStatement pstmt int batchSize 1000; // …...
