当前位置: 首页 > news >正文

[Hive] INSERT OVERWRITE DIRECTORY要注意的问题

在使用Hive的INSERT OVERWRITE语句时,需要注意以下问题:

  1. 数据覆盖:INSERT OVERWRITE语句会覆盖目标目录中的数据。因此,在执行该语句之前,请确保目标目录为空或者你希望覆盖的数据已经不再需要。
  2. 数据格式:Hive的INSERT OVERWRITE语句要求同一批次的数据样式必须一样,包括行列分隔符和数据存储格式。如果你想自定义每个文件的存储格式和行列分隔符,那么可能需要考虑使用其他方法,例如使用Hive的DISTRIBUTE BY子句和SET语句来实现。
  3. 分区数据重复:如果你在使用分区表,并且在目标目录中已经存在相同的分区数据,那么使用INSERT OVERWRITE语句会导致数据重复。在执行该语句之前,请确保目标目录中的分区数据是正确的,或者使用其他方法删除或覆盖这些分区数据。
  4. 数据迁移问题:如果你在将数据从一个系统导入到另一个系统时使用INSERT OVERWRITE语句,需要注意目标目录中可能存在的数据迁移问题。例如,如果目标目录中已经存在一些数据,而你要导入的数据与这些数据存在冲突或不一致,那么需要采取适当的措施来解决这个问题。

在使用Hive的INSERT OVERWRITE语句时,对目录有一些要求。

首先,对于INSERT OVERWRITE LOCAL DIRECTORY命令,需要确保目录的路径是正确的,并且Hive有权限访问和写入该目录。同时,由于所有的命令都是发送到主HiveServer上去执行的,所以要求此目录必须在主HiveServer节点上。



另外,对于INSERT OVERWRITE语句的目标目录,需要注意以下几点:

  1. 目录必须存在:在执行INSERT OVERWRITE语句之前,需要确保目标目录已经存在。如果目录不存在,需要先创建该目录。 (或者有该目录的上级目录)
  2. 目录权限:需要确保Hive有权限访问和写入目标目录。如果Hive没有相应的权限,可能会导致写入失败或出现其他错误。
  3. 目录中不能含有空格!!!

总之,在使用Hive的INSERT OVERWRITE语句时,需要注意目标目录的存在性、可访问性和数据重复问题。同时,需要仔细检查并处理这些问题,以确保数据的准确性和完整性。

注意数据覆盖、数据格式、分区数据重复以及数据迁移问题。确保在执行该语句之前,仔细检查并处理这些问题,以确保数据的准确性和完整性。

相关文章:

[Hive] INSERT OVERWRITE DIRECTORY要注意的问题

在使用Hive的INSERT OVERWRITE语句时,需要注意以下问题: 数据覆盖:INSERT OVERWRITE语句会覆盖目标目录中的数据。因此,在执行该语句之前,请确保目标目录为空或者你希望覆盖的数据已经不再需要。数据格式:…...

刚柔相济铸伟业 ——访湖南顺新金属制品科技有限公司董事长张顺新

时代在变,唯初心不改。 精致、谦虚、谨慎、儒雅、温和——他就是张顺新,湖南顺新金属制品科技有限公司、湖南顺新供应链管理有限公司董事长,民建长沙市委常委,民建湖南省环资委副主任,省、市民建企联会常务副会长&…...

DHorse(K8S的CICD平台)的实现原理

综述 首先,本篇文章所介绍的内容,已经有完整的实现,可以参考这里。 在微服务、DevOps和云平台流行的当下,使用一个高效的持续集成工具也是一个非常重要的事情。虽然市面上目前已经存在了比较成熟的自动化构建工具,比如…...

类图复习:类图简单介绍

入职新公司在看新项目的代码,所以借助类图梳理各个类之间的关系,奈何知识已经还给了老师,不得不重新学习下类图的相关知识,此处将相关内容记录下方便后续使用。 文章目录 类图语法类与类的关系画类图 类图语法 语法描述public-pr…...

【字符串】【双指针翻转字符串+快慢指针】Leetcode 151 反转字符串中单词【好】

【字符串】【双指针翻转字符串快慢指针】Leetcode 151 反转字符串中单词 解法1 双指针翻转字符串快慢指针更新数组大小 ---------------🎈🎈题目链接🎈🎈------------------- ---------------🎈🎈解答链接…...

3D Gaussian Splatting:用于实时的辐射场渲染

Kerbl B, Kopanas G, Leimkhler T, et al. 3d gaussian splatting for real-time radiance field rendering[J]. ACM Transactions on Graphics (ToG), 2023, 42(4): 1-14. 3D Gaussian Splatting 是 Siggraph 2023 的 Best Paper,法国团队在会议上展示了其实现的最…...

【nlp】文本处理的基本方法

文本处理的基本方法 1 什么是分词2 什么是命名实体识别3 什么是词性标准1 什么是分词 分词就是将连续的字序列按照一定的规范重新组合成词序列的过程。在英文的行文中,单词之间是以空格作为自然分界符的,而中文只是字、句和段能通过明显的分界符来简单划界,唯独词没有一个形…...

C++17 std::filesystem

std::filesystem 是 C17 标准引入的文件系统库,提供了一套用于处理文件和目录的 API。它主要包括以下几个核心类: std::filesystem::path:用于表示文件系统路径。它提供了一系列方法,允许你对路径进行各种操作,如拼接…...

JVM在线分析-解决问题的工具一(jinfo,jmap,jstack)

1. jinfo (base) PS C:\Users\zishi\Desktop> jinfo Usage:jinfo <option> <pid>(to connect to a running process)where <option> is one of:-flag <name> to print the value of the named VM flag #输出对应名称的参数-flag [|-]<n…...

[深度学习]不平衡样本的loss

不平衡样本的loss ”softmax“、”weighted softmax“、”focal“、”class-balanced“ 和 ”balanced softmax“ 都是用于多类分类任务的损失函数。它们之间的区别在于如何处理类别不均衡的问题。 Softmax 是常用的多类分类损失函数。它将输出分布转换为概率分布&#xff0c…...

【MySQL】表的增删改查(强化)

作者主页&#xff1a;paper jie_博客 本文作者&#xff1a;大家好&#xff0c;我是paper jie&#xff0c;感谢你阅读本文&#xff0c;欢迎一建三连哦。 本文录入于《MySQL》专栏&#xff0c;本专栏是针对于大学生&#xff0c;编程小白精心打造的。笔者用重金(时间和精力)打造&a…...

MyBatis-Plus--在xml中使用wrapper的方法

原文网址&#xff1a;MyBatis-Plus--在xml中使用wrapper的方法_IT利刃出鞘的博客-CSDN博客 简介 本文介绍MyBatis-Plus如何在xml中使用wrapper。 Service QueryWrapper<T> wrapper new QueryWrapper<T>(); wrapper.eq("r.room_id", vo.getRoomId())…...

Oracle RAC是啥?

Oracle RAC&#xff0c;全称是Oracle Real Application Cluster&#xff0c;翻译过来为Oracle真正的应用集群&#xff0c;它是Oracle提供的一个并行集群系统&#xff0c;由 Oracle Clusterware&#xff08;集群就绪软件&#xff09; 和 Real Application Cluster&#xff08;RA…...

springboot中定时任务cron不生效,fixedRate指定间隔失效,只执行一次的问题

在调试计算任务的时候&#xff0c;手动重置任务为初始状态&#xff0c;但是并没有重新开始计算&#xff0c;检查定时任务代码&#xff1a; 从Scheduled(fixedRate 120000)可以看到&#xff0c;应该是间隔120秒执行一次该定时任务&#xff0c;查看后台日志&#xff0c;并没有重…...

苹果手机发热发烫是什么原因?看完这篇你就知道了!

苹果手机以其卓越的用户体验和优秀的性能得到了广大用户的喜爱和追捧。在日常使用苹果手机时&#xff0c;我们可能会遇到手机发热发烫的情况。那么&#xff0c;苹果手机发热发烫是什么原因呢&#xff1f;小编将为大家解析这一问题的原因&#xff0c;并为您提供相应的解决方案&a…...

民安智库(第三方满意度调研公司):助力健身房提升客户满意度的秘密武器

在当今的健身行业&#xff0c;客户满意度已经成为衡量健身房竞争力的关键因素。为了准确了解客户的需求和反馈&#xff0c;某健身房委托民安智库对其进行客户满意度调查。 本次调查的主要目的是了解客户对健身房的满意度&#xff0c;包括对设施、课程、教练和服务的评价。调查…...

2011年09月01日 Go生态洞察:Go语言词法扫描与App Engine演示

&#x1f337;&#x1f341; 博主猫头虎&#xff08;&#x1f405;&#x1f43e;&#xff09;带您 Go to New World✨&#x1f341; &#x1f984; 博客首页——&#x1f405;&#x1f43e;猫头虎的博客&#x1f390; &#x1f433; 《面试题大全专栏》 &#x1f995; 文章图文…...

pytorch搭建squeezenet网络的整套工程(升级版)

上一篇当中&#xff0c;使用pytorch搭建了一个squeezenet&#xff0c;效果还行。但是偶然间发现了一个稍微改动的版本&#xff0c;拿来测试一下发现效果会更好&#xff0c;大概网络结构还是没有变&#xff0c;还是如下的第二个版本&#xff1a; 具体看网络结构代码&#xff1a…...

222. 完全二叉树的节点个数

题目链接&#xff1a;222. 完全二叉树的节点个数 需复刷 全代码&#xff1a; class Solution { public:int getnums(TreeNode* Node){if(Node NULL){return 0;}int leftnums getnums(Node ->left);int rightnums getnums(Node ->right);int cns 1 leftnums righ…...

adb and 软件架构笔记

Native Service&#xff0c;这是Android系统里的一种特色&#xff0c;就是通过C或是C代码写出来的&#xff0c;供Java进行远程调用的Remote Service&#xff0c;因为C/C代码生成的是Native代码&#xff08;机器代码&#xff09;&#xff0c;于是叫Native Service。 native服务…...

深度学习在微纳光子学中的应用

深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向&#xff1a; 逆向设计 通过神经网络快速预测微纳结构的光学响应&#xff0c;替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...

Spark 之 入门讲解详细版(1)

1、简介 1.1 Spark简介 Spark是加州大学伯克利分校AMP实验室&#xff08;Algorithms, Machines, and People Lab&#xff09;开发通用内存并行计算框架。Spark在2013年6月进入Apache成为孵化项目&#xff0c;8个月后成为Apache顶级项目&#xff0c;速度之快足见过人之处&…...

C++.OpenGL (10/64)基础光照(Basic Lighting)

基础光照(Basic Lighting) 冯氏光照模型(Phong Lighting Model) #mermaid-svg-GLdskXwWINxNGHso {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-GLdskXwWINxNGHso .error-icon{fill:#552222;}#mermaid-svg-GLd…...

大模型多显卡多服务器并行计算方法与实践指南

一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...

Java 二维码

Java 二维码 **技术&#xff1a;**谷歌 ZXing 实现 首先添加依赖 <!-- 二维码依赖 --><dependency><groupId>com.google.zxing</groupId><artifactId>core</artifactId><version>3.5.1</version></dependency><de…...

深度学习习题2

1.如果增加神经网络的宽度&#xff0c;精确度会增加到一个特定阈值后&#xff0c;便开始降低。造成这一现象的可能原因是什么&#xff1f; A、即使增加卷积核的数量&#xff0c;只有少部分的核会被用作预测 B、当卷积核数量增加时&#xff0c;神经网络的预测能力会降低 C、当卷…...

Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信

文章目录 Linux C语言网络编程详细入门教程&#xff1a;如何一步步实现TCP服务端与客户端通信前言一、网络通信基础概念二、服务端与客户端的完整流程图解三、每一步的详细讲解和代码示例1. 创建Socket&#xff08;服务端和客户端都要&#xff09;2. 绑定本地地址和端口&#x…...

CSS设置元素的宽度根据其内容自动调整

width: fit-content 是 CSS 中的一个属性值&#xff0c;用于设置元素的宽度根据其内容自动调整&#xff0c;确保宽度刚好容纳内容而不会超出。 效果对比 默认情况&#xff08;width: auto&#xff09;&#xff1a; 块级元素&#xff08;如 <div>&#xff09;会占满父容器…...

算法岗面试经验分享-大模型篇

文章目录 A 基础语言模型A.1 TransformerA.2 Bert B 大语言模型结构B.1 GPTB.2 LLamaB.3 ChatGLMB.4 Qwen C 大语言模型微调C.1 Fine-tuningC.2 Adapter-tuningC.3 Prefix-tuningC.4 P-tuningC.5 LoRA A 基础语言模型 A.1 Transformer &#xff08;1&#xff09;资源 论文&a…...

推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材)

推荐 github 项目:GeminiImageApp(图片生成方向&#xff0c;可以做一定的素材) 这个项目能干嘛? 使用 gemini 2.0 的 api 和 google 其他的 api 来做衍生处理 简化和优化了文生图和图生图的行为(我的最主要) 并且有一些目标检测和切割(我用不到) 视频和 imagefx 因为没 a…...