当前位置: 首页 > news >正文

每天一道算法题:40. 组合总和 II

难度

中等

题目

给定一个候选人编号的集合 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合。
candidates 中的每个数字在每个组合中只能使用 一次
注意:解集不能包含重复的组合。

示例 1:

输入: candidates = [10,1,2,7,6,1,5], target = 8, 输出: [ [1,1,6], [1,2,5], [1,7], [2,6] ]

示例 2:

输入: candidates = [2,5,2,1,2], target = 5, 输出: [ [1,2,2], [5] ]

提示:

1 <= candidates.length <= 100
1 <= candidates[i] <= 50
1 <= target <= 30

思路

和 39 题类似但是不能有重复的解,使用回溯试探法,但是过程要考虑去重。
数组中可能出现重复的数字,但是结果中不能出现重复的解,在处理过程中就要进行去重和剪枝。首先对 candidates 数组进行排序,在递归的过程中,当发现当前元素与前一个元素相同,并且前一个元素已经被考虑过(不在当前组合中),就跳过当前元素。
从数组的第一个元素开始,依次考虑是否选择该元素,再递归地考虑下一个元素,每个数字只能使用一次,因此在递归调用时,下一轮搜索的起始位置应该是当前位置的下一个位置。

代码

"""
10,1,2,7,6,1,5
8如果不排序的情况(10) > 8
1 2 7 > 8
1 2 6 > 8
1 2 1 5 > 8
1 2 5 = 81 7   = 8
1 6 1 = 8
1 1 5 遍历完成
1 5   遍历完成2 7   > 8
2 6   = 8
2 1 5 = 8 重复了 去重的方法 就是将所有的子集排序后,再进行去重,这样是再将所有的接过遍历完成之后,才能去重,效率非常低
2 52 7 > 8
2 6 = 8
2"""class Solution:def combinationSum2(self, candidates, target):self.candidates = candidates# 先对所有元素进行排序,再递归过程中进行去重,如果相邻的两个值相同,并且前一个值已经选过了,就不会选self.candidates.sort()self.target = targetself.length = len(self.candidates)self.cache = []self.result = []self.backtrack(0, [], self.target)print(self.result)return self.resultdef backtrack(self, start, tmp, target):# start 在当前层遍历的开始位置# tmp 记录临时值的栈# target 目标值,当目标值为0是 就可以终止递归# 当目标值为0的时候就终止递归,记录此时的组合if target == 0:self.result.append(tmp[:])returnfor i in range(start, self.length):# 在同一层遍历的时候,如果两个相邻的元素相同,就跳过 使用i-1就说明 上一个位置的值已经被选过了# i > start 因为要和前一个元素比较,所以i的值必须时大于start的,不然会越界if i > start and self.candidates[i] == self.candidates[i - 1]:continue# 如果当前值比目标值小 或者 相等的时候,才去递归下一层,不然直接跳过if target >= self.candidates[i]:tmp.append(self.candidates[i])# 集合中 每各元素只能添加一次,所以添加完当前的元素后,去下一层试探的时候只能从下一位开始遍历,所以下一层的开始位置就是i+1self.backtrack(i + 1, tmp, target - self.candidates[i])tmp.pop()if __name__ == '__main__':candidates = [10, 1, 2, 7, 6, 1, 5]target = 8# candidates = [2, 5, 2, 1, 2]# target = 5s = Solution()s.combinationSum2(candidates, target)

相关文章:

每天一道算法题:40. 组合总和 II

难度 中等 题目 给定一个候选人编号的集合 candidates 和一个目标数 target &#xff0c;找出 candidates 中所有可以使数字和为 target 的组合。 candidates 中的每个数字在每个组合中只能使用 一次 。 注意&#xff1a;解集不能包含重复的组合。 示例 1: 输入: candidat…...

Centos7安装PostgreSQL 14

环境&#xff1a; Centos7安装PostgreSQL_14版本数据库&#xff1b; 打开官方网站&#xff1a;PostgreSQL: Linux downloads (Red Hat family) 一、 版本选择 复制、粘贴并运行如下脚本&#xff1a; 二、安装步骤 这些命令是在 CentOS 7.x 系统上安装和配置 PostgreSQL 14 的步…...

Shopee的折扣活动怎么分类?shopee设置折扣注意事项

旺季到来&#xff0c;Shopee会举办一些折扣活动来吸引客户&#xff0c;那么shopee的折扣活动怎么分类&#xff0c;shopee设置折扣注意事项&#xff1f; shopee的折扣活动怎么分类&#xff1f; 满减活动&#xff1a;满减活动是虾皮常见的一种折扣形式。在这种活动中&#xff0…...

磁盘空间占用巨大的meta.db-wal文件缓存(tracker-miner-fs索引服务)彻底清除办法

磁盘命令参考本博客linux磁盘空间满了怎么办. 问题: 磁盘空间被盗 今天瞄了一下我的Ubuntu系统盘&#xff0c; nftdiggernftdigger-Ubuntu:~$ df -h 文件系统 容量 已用 可用 已用% 挂载点 udev 16G 0 16G 0% /dev tmpfs 3.2G 1.9…...

力扣:160. 相交链表(Python3)

题目&#xff1a; 给你两个单链表的头节点 headA 和 headB &#xff0c;请你找出并返回两个单链表相交的起始节点。如果两个链表不存在相交节点&#xff0c;返回 null 。 图示两个链表在节点 c1 开始相交&#xff1a; 题目数据 保证 整个链式结构中不存在环。 注意&#xff0c;…...

【华为OD机试AB高分必刷题目】无名的搜索题(Java-优先搜索(DFS)实现)

🚀你的旅程将在这里启航!本专栏所有题目均包含优质解题思路,高质量解题代码,详细代码讲解,助你深入学习,高分通过! 文章目录 【华为OD机试AB高分必刷题目】无名的搜索题(Java-优先搜索(DFS)实现)题目描述解题思路Java题解代码代码OJ评判结果代码讲解寄语【华为OD机…...

ant 任务(task)通过内嵌的arg元素传递命令行参数

有的ant 任务将参数传递给其它的进程作为命令行参数。这可以通过内嵌的arg元素来实现。 例如&#xff1a; <exec executable"${browser}" spawn"true"><arg value"${file}"/> </exec>arg元素的部分属性说明&#xff1a; val…...

STM32G0+EMW3080+阿里云飞燕平台实现单片机WiFi智能联网功能(三)STM32G0控制EMW3080实现IoT功能

项目描述&#xff1a;该系列记录了STM32G0EMW3080实现单片机智能联网功能项目的从零开始一步步的实现过程&#xff1b;硬件环境&#xff1a;单片机为STM32G030C8T6&#xff1b;物联网模块为EMW3080V2-P&#xff1b;网联网模块的开发板为MXKit开发套件&#xff0c;具体型号为XCH…...

IntelliJ IDEA - Git Commit 后 Commit 窗口不消失解决方案

这个现象是在 2023 年版本后开始的&#xff0c;一开始以为是 Mac 系统的原因&#xff0c;后来发现原来 Windows 也这样&#xff0c;所以应该只跟 IDEA 版本有关 可以看到左侧 commit 后&#xff0c;这个侧边栏还在&#xff0c;按理讲在以前的版本是之前消失&#xff0c;这样使…...

Vue 组件化编程 和 生命周期

目录 一、组件化编程 1.基本介绍 : 2.原理示意图 : 3.全局组件示例 : 4.局部组件示例 : 5.全局组件和局部组件的区别 : 二、生命周期 1.基本介绍 : 2.生命周期示意图 : 3.实例测试 : 一、组件化编程 1.基本介绍 : (1) 开发大型应用的时候&#xff0c;页面往往划分成…...

《数字图像处理-OpenCV/Python》连载(41)图像的旋转

《数字图像处理-OpenCV/Python》连载&#xff08;41&#xff09;图像的旋转 本书京东优惠购书链接&#xff1a;https://item.jd.com/14098452.html 本书CSDN独家连载专栏&#xff1a;https://blog.csdn.net/youcans/category_12418787.html 第 6 章 图像的几何变换 几何变换分…...

案例 - 拖拽上传文件,生成缩略图

直接看效果 实现代码 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>拖拽上传文件</title>&l…...

PHP 使用递归方式 将其二维数组整合为层级树 其中层级id 为一个uuid的格式 造成的诡异问题 已解决

不啰嗦 直接上源代码 <?php function findChildren($list, $p_id){$r array();foreach ($list as $k > $item) {if ($item[fid] $p_id) {unset($list[$k]);$length count($r);$r[$length] $item;if ($t findChildren($list, $item[id])) {$r[$length][children] …...

rv1126-rv1109-添加分区,定制固件,开机挂载功能

===================================================================== 修改分区: 这里是分区的txt文件选择; 这里是分区的划分,我这里回车了,方便看 FIRMWARE_VER: 8.1 MACHINE_MODEL: RV1126 MACHINE_ID: 007 MANUFACTURER: RV1126 MAGIC: 0x5041524B ATAG: 0x00200…...

一台电脑使用多个gitee账号,以及提交忽略部分文件

目录 ​编辑 一&#xff1a;前言 二&#xff1a;解决方法 三&#xff1a;提交gitee时忽略文件 一&#xff1a;前言 在开发中&#xff0c;我们拥有不止一个 gitee 账号&#xff0c;通常而言一个是公司的&#xff0c;一个是私人的。有时候我们在公司写了一些自己的东西&#…...

解析邮件文本内容; Mime文本解析; MimeStreamParser; multipart解析

原始文本 ------_Part_46705_715015081.1699589700255 Content-Type: text/html;charsetUTF-8 Content-Transfer-Encoding: base64PGh0bWwCiAgICA8aGVhZD4KICAgICAgICA8bWV0YSBodHRwLW VxdWl2PSJDb250ZW50LVR5cGUiIGNvbnRlbnQ9InRleHQvaHRt bDsgY2hhcnNldD1VVEYtOCICiAgICAgIC…...

获取请求IP以及IP解析成省份

某些业务需要获取请求IP以及将IP解析成省份之类的&#xff0c;于是我写了一个工具类&#xff0c;可以直接COPY /*** IP工具类* author xxl* since 2023/11/9*/ Slf4j public class IPUtils {/*** 过滤本地地址*/public static final String LOCAL_ADDRESS "127.0.0.1&quo…...

YOLOv8-seg改进:复现HIC-YOLOv5,HIC-YOLOv8-seg助力小目标分割

🚀🚀🚀本文改进:HIC-YOLOv8-seg:1)添加一个针对小物体的额外预测头,以提供更高分辨率的特征图2)在backbone和neck之间采用involution block来增加特征图的通道信息;3)在主干网末端加入 CBAM 的注意力机制; 🚀🚀🚀HIC-YOLOv8-seg小目标分割检测&复杂场景…...

vscode 终端进程启动失败: shell 可执行文件“C:\Windows\System32\WindowsPower

vscode 终端进程启动失败: shell 可执行文件“C:\Windows\System32\WindowsPower 第一次用vscode&#xff0c;然后遇到这个问题&#xff0c;在设置里搜索 terminal.integrated.defaultProfile.windows 将这里的null改成"Command Prompt" 重启就可以了...

【中间件篇-Redis缓存数据库02】Redis高级特性和应用(慢查询、Pipeline、事务、Lua)

Redis高级特性和应用(慢查询、Pipeline、事务、Lua) Redis的慢查询 许多存储系统&#xff08;例如 MySQL)提供慢查询日志帮助开发和运维人员定位系统存在的慢操作。所谓慢查询日志就是系统在命令执行前后计算每条命令的执行时间&#xff0c;当超过预设阀值,就将这条命令的相关…...

多模态2025:技术路线“神仙打架”,视频生成冲上云霄

文&#xff5c;魏琳华 编&#xff5c;王一粟 一场大会&#xff0c;聚集了中国多模态大模型的“半壁江山”。 智源大会2025为期两天的论坛中&#xff0c;汇集了学界、创业公司和大厂等三方的热门选手&#xff0c;关于多模态的集中讨论达到了前所未有的热度。其中&#xff0c;…...

盘古信息PCB行业解决方案:以全域场景重构,激活智造新未来

一、破局&#xff1a;PCB行业的时代之问 在数字经济蓬勃发展的浪潮中&#xff0c;PCB&#xff08;印制电路板&#xff09;作为 “电子产品之母”&#xff0c;其重要性愈发凸显。随着 5G、人工智能等新兴技术的加速渗透&#xff0c;PCB行业面临着前所未有的挑战与机遇。产品迭代…...

【Java学习笔记】Arrays类

Arrays 类 1. 导入包&#xff1a;import java.util.Arrays 2. 常用方法一览表 方法描述Arrays.toString()返回数组的字符串形式Arrays.sort()排序&#xff08;自然排序和定制排序&#xff09;Arrays.binarySearch()通过二分搜索法进行查找&#xff08;前提&#xff1a;数组是…...

Go 语言接口详解

Go 语言接口详解 核心概念 接口定义 在 Go 语言中&#xff0c;接口是一种抽象类型&#xff0c;它定义了一组方法的集合&#xff1a; // 定义接口 type Shape interface {Area() float64Perimeter() float64 } 接口实现 Go 接口的实现是隐式的&#xff1a; // 矩形结构体…...

多模态商品数据接口:融合图像、语音与文字的下一代商品详情体验

一、多模态商品数据接口的技术架构 &#xff08;一&#xff09;多模态数据融合引擎 跨模态语义对齐 通过Transformer架构实现图像、语音、文字的语义关联。例如&#xff0c;当用户上传一张“蓝色连衣裙”的图片时&#xff0c;接口可自动提取图像中的颜色&#xff08;RGB值&…...

页面渲染流程与性能优化

页面渲染流程与性能优化详解&#xff08;完整版&#xff09; 一、现代浏览器渲染流程&#xff08;详细说明&#xff09; 1. 构建DOM树 浏览器接收到HTML文档后&#xff0c;会逐步解析并构建DOM&#xff08;Document Object Model&#xff09;树。具体过程如下&#xff1a; (…...

【HTTP三个基础问题】

面试官您好&#xff01;HTTP是超文本传输协议&#xff0c;是互联网上客户端和服务器之间传输超文本数据&#xff08;比如文字、图片、音频、视频等&#xff09;的核心协议&#xff0c;当前互联网应用最广泛的版本是HTTP1.1&#xff0c;它基于经典的C/S模型&#xff0c;也就是客…...

Swagger和OpenApi的前世今生

Swagger与OpenAPI的关系演进是API标准化进程中的重要篇章&#xff0c;二者共同塑造了现代RESTful API的开发范式。 本期就扒一扒其技术演进的关键节点与核心逻辑&#xff1a; &#x1f504; 一、起源与初创期&#xff1a;Swagger的诞生&#xff08;2010-2014&#xff09; 核心…...

Angular微前端架构:Module Federation + ngx-build-plus (Webpack)

以下是一个完整的 Angular 微前端示例&#xff0c;其中使用的是 Module Federation 和 npx-build-plus 实现了主应用&#xff08;Shell&#xff09;与子应用&#xff08;Remote&#xff09;的集成。 &#x1f6e0;️ 项目结构 angular-mf/ ├── shell-app/ # 主应用&…...

服务器--宝塔命令

一、宝塔面板安装命令 ⚠️ 必须使用 root 用户 或 sudo 权限执行&#xff01; sudo su - 1. CentOS 系统&#xff1a; yum install -y wget && wget -O install.sh http://download.bt.cn/install/install_6.0.sh && sh install.sh2. Ubuntu / Debian 系统…...